人工智能不再是未来,机器学习靠什么来实现?

简介:

随着科学技术的迅猛发展,人们想用机器做越来越多的事,人们能做的,不能做的,懒得做的,统统都想让机器来帮助完成。“人工智能”这个曾经只能出现在好莱坞科幻电影里的事,已经变得不再遥远,而这一研究也都在各行各业开始启动。在通往人工智能的路上, 机器学习是核心,与传统电脑的计算模式不同,机器学习是将输入和结果告诉电脑,由电脑来识别规则、产生程序,从而承担大量的编程工作。

谈到机器学习,我们很容易想到前段时间谷歌AlphaGo大胜围棋名家李世石的事情,这件事展现了大数据云时代机器学习的强大实力。尽管如此,目前机器学习仍然在早期探索阶段,但其巨大潜力早已经受到各方关注。借着当今风靡全球的“大数据”春风,作为人工智能领域重要方向的机器学习,逐渐成为技术创新的生力军。

人工智能不再是未来,机器学习靠什么来实现?

机器学习前景这么好,我们靠什么去实现呢?两个核心:首先是必须具备足够强大的数据库;其次,必须 具备足够强大的计算能力。随着数据采集技术的飞速发展,每一个从网络获取信息的用户,都成为提供新的信息的源头,数据源的日益丰富引发数据规模爆炸性增 长。大规模数据一方面为精准定位用户需求提供更多可能性,但也为快速有效处理数据带来更多的挑战。采用GPU方式能很好处理深度神经网络问题,因为机器学习算法通常需要海量计算来处理数据(图像、文本等),和提取数据对象的确定特征。尤其是在训练阶段,模型或算法为了调整精度,需要处理大量数据。而GPU是非常擅长于管理一些比较复杂的数据,像视频、音频的数据等。

人工智能不再是未来,机器学习靠什么来实现?

如今,GPU加速技术已经应用在了社会的方方面面,除了传统的科研院所和高校教育机构之外,包括游戏、汽车、医疗、勘探、VR和互联网等各行各业中都出现了GPU加速的身影。

人们利用 GPU 来训练这些深度神经网络,所使用的训练集大得多,所耗费的时间大幅缩短,占用的数据中心基础设施也少得多。GPU 还被用于运行这些机器学习训练模型,以便在云端进行分类和预测,从而在耗费功率更低、占用基础设施更少的情况下能够支持远比从前更大的数据量和吞吐量。宝 德作为国内首屈一指的HPC解决方案提供商,基于对市场的敏感度与洞察力,在拥抱深度学习和机器学习上非常积极。针对各类客户对于GPU服务器的不同需求层层细分,宝德在2015年将8款全新一代高密度GPU加速计算服务器隆重推向市场,以充分满足不同客户不同应用场景的使用需求。

宝德推出的全新一代高密度GPU加速计算服务器适用于高性能计算、数据挖掘、机器学习、大数据分 析、互联网、金融等关键应用场景,为各行业客户提供了全方位的计算解决方案,通过GPU承担部分预算量繁重且耗时的代码,为运行在CPU上的应用程序加 速,足以帮助企业完成更多计算任务、处理更大数据集、缩短应用运行时间。

GPU加速计算服务器将是实现机器学习和人工智能的必由之路。机器学习领域的突破引发了人工智 能革命,也将对服务器行业带来巨大的影响。只有具备强大的研发能力和高度的市场敏感度和洞察力的服务器厂商才能快速拥抱这场人工智能革命,满足市场需求。 在这场变革中,未来谁主沉浮,我们拭目以待!


原文发布时间为:2016-05-23

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。



相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
7月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
5月前
|
机器学习/深度学习 人工智能 监控
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
本系列文章深入讲解了从Seq2Seq、RNN到Transformer,再到GPT模型的关键技术原理与实现细节,帮助读者全面掌握Transformer及其在NLP中的应用。同时,通过一个房价预测的完整案例,介绍了算法工程师如何利用数据训练模型并解决实际问题,涵盖需求分析、数据收集、模型训练与部署等全流程。文章适合初学者和开发者学习AI基础与实战技能。
642 25
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
6月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL消息传递接口的PyG替换
DGL (Deep Graph Learning) 和 PyG (Pytorch Geometric) 是两个主流的图神经网络库,它们在API设计和底层实现上有一定差异,在不同场景下,研究人员会使用不同的依赖库,昇腾NPU对PyG图机器学习库的支持亲和度更高,因此有些时候需要做DGL接口的PyG替换。
|
7月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
376 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
6月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL图构建接口的PyG替换
本文探讨了在图神经网络中将DGL接口替换为PyG实现的方法,重点以RFdiffusion蛋白质设计模型中的SE3Transformer为例。SE3Transformer通过SE(3)等变性提取三维几何特征,其图构建部分依赖DGL接口。文章详细介绍了两个关键函数的替换:`make_full_graph` 和 `make_topk_graph`。前者构建完全连接图,后者生成k近邻图。通过PyG的高效实现(如`knn_graph`),我们简化了图结构创建过程,并调整边特征处理逻辑以兼容不同框架,从而更好地支持昇腾NPU等硬件环境。此方法为跨库迁移提供了实用参考。
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
308 6
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
Java+机器学习基础:打造AI学习基础
随着人工智能(AI)技术的飞速发展,越来越多的开发者开始探索如何将AI技术应用到实际业务场景中。Java作为一种强大的编程语言,不仅在企业级应用开发中占据重要地位,在AI领域也展现出了巨大的潜力。本文将通过模拟一个AI应用,从背景历史、业务场景、优缺点、底层原理等方面,介绍如何使用Java结合机器学习技术来打造一个AI学习的基础Demo。
487 18
|
10月前
|
机器学习/深度学习 数据采集 人工智能
容器化机器学习流水线:构建可复用的AI工作流
本文介绍了如何构建容器化的机器学习流水线,以提高AI模型开发和部署的效率与可重复性。首先,我们探讨了机器学习流水线的概念及其优势,包括自动化任务、确保一致性、简化协作和实现CI/CD。接着,详细说明了使用Kubeflow Pipelines在Kubernetes上构建流水线的步骤,涵盖安装、定义流水线、构建组件镜像及上传运行。容器化流水线不仅提升了环境一致性和可移植性,还通过资源隔离和扩展性支持更大规模的数据处理。

热门文章

最新文章