时间复杂度

简介: 1、 O(1)<O(log2n)<O(n)<O(n log2 n)<O(n^2)<O(n^3)<O(2^n) 2、例子: O(1)  Temp=i;i=j;j=temp;                     以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果

1、 O(1)<O(log2n)<O(n)<O(n log2 n)<O(n^2)<O(n^3)<O(2^n)

2、例子:

O(1) 


Temp=i;i=j;j=temp;                    

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n^2)

2.1. 交换i和j的内容
     sum=0;                 (一次)
     for(i=1;i<=n;i++)       (n次 )
        for(j=1;j<=n;j++) (n^2次 )
         sum++;       (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.   
    for (i=1;i<n;i++)
    {
        y=y+1;         ①   
        for (j=0;j<=(2*n);j++)    
           x++;        ②      
    }         
解: 语句1的频度是n-1
          语句2的频度是(n-1)*(2n+1)=2n^2-n-1
          f(n)=2n^2-n-1+(n-1)=2n^2-2
          该程序的时间复杂度T(n)=O(n^2).         

O(n)      
                                                      
2.3.
    a=0;
    b=1;                      ①
    for (i=1;i<=n;i++) ②
    {  
       s=a+b;    ③
       b=a;     ④  
       a=s;     ⑤
    }
解:语句1的频度:2,        
           语句2的频度: n,        
          语句3的频度: n-1,        
          语句4的频度:n-1,    
          语句5的频度:n-1,                                  
          T(n)=2+n+3(n-1)=4n-1=O(n).
                                                                                                 
O(log2n )


2.4.
     i=1;       ①
    while (i<=n)
       i=i*2; ②
解: 语句1的频度是1,  
          设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n    
          取最大值f(n)= log2n,
          T(n)=O(log2n )


O(n^3) 


2.5.
    for(i=0;i<n;i++)
    {  
       for(j=0;j<i;j++)  
       {
          for(k=0;k<j;k++)
             x=x+2;  
       }
    }
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).


3、常用的算法的时间复杂度和空间复杂度

排序法

最差时间分析 平均时间复杂度 稳定度 空间复杂度
冒泡排序 O(n2) O(n2) 稳定 O(1)
快速排序 O(n2) O(n*log2n) 不稳定 O(log2n)~O(n)
选择排序 O(n2) O(n2) 稳定 O(1)
二叉树排序 O(n2) O(n*log2n) 不一顶 O(n)

插入排序

O(n2) O(n2) 稳定 O(1)
堆排序 O(n*log2n) O(n*log2n) 不稳定 O(1)
希尔排序 O O 不稳定 O(1)



相关文章
|
2月前
|
存储 算法
时间复杂度
【10月更文挑战第12天】
32 12
|
2月前
|
机器学习/深度学习 存储 算法
一篇文章理解时间复杂度和空间复杂度
一篇文章理解时间复杂度和空间复杂度
41 0
|
6月前
|
算法 编译器
什么是时间复杂度?
什么是时间复杂度?
203 0
|
6月前
|
算法 程序员 存储
时间复杂度与空间复杂度详解
时间复杂度与空间复杂度详解
|
7月前
|
算法
了解时间复杂度和空间复杂度
在学习数据结构前,我们需要了解时间复杂度和空间复杂度的概念,这能够帮助我们了解数据结构。 算法效率分为时间效率和空间效率
41 1
|
7月前
|
机器学习/深度学习 存储 算法
时间复杂度和空间复杂度
时间复杂度和空间复杂度
|
7月前
|
机器学习/深度学习 算法 Windows
时间复杂度与空间复杂度
如何理解时间复杂度与空间复杂度
|
算法
【时间复杂度和空间复杂度】
【时间复杂度和空间复杂度】
62 0
|
算法 程序员
时间复杂度详解
时间复杂度详解
|
算法
【你真的了解时间复杂度吗】(一)
【你真的了解时间复杂度吗】(一)
103 0