提升数据分析能力成熟度之四步曲

简介:

ZDNET至顶网CIO与应用频道 10月27日 北京消息:您是不是常常苦于对业务中碰到的问题找不到好的解决办法,又或者担心不久的将来会爆发一系列潜在的问题?在某些事件完全失控之前您是否想事先找寻到一些蛛丝马迹?如果您的回答是肯定的话,不要担心,这种情况并不是特例。

现实中存在着数量惊人的公司,在需要作出影响其公司底线的关键决策的时刻,缺乏及时有效的信息。想象一下这样的一个画面:某汽车生产厂家由于安全故障问题而面临大量召回的风险;或者社交媒体上充斥着对某旅行社的负面评价;--如果在这些事件发生之前或者在危险还没升级之前,相应的危机可以得到解决的话,相信无论是汽车生产厂家还是旅行社,都会大受裨益。

幸运的是,我们知道一个公司/组织能否对未来作出快速的响应,与其内部预测分析能力的成熟度直接相关。而这一切又取决于合理的人才配备、分析流程以及分析技术的部署和应用,全副的武装可助您解燃眉之急,并赋予您处理实际业务中碰到的疑难困惑的能力,还能够对潜在的风险作出预警,当然所有这些都建立在对现有数据进行分析的基础上。

接下来的四步曲可以帮助您提升组织内部敏捷的分析能力,即在事情还未发生之前及时作出预警,从而减少未来的不确定性。

第一步把分析置于首要地位

提升组织内部分析能力最关键的一步就是要让所有的员工都意识到基于信息决策的重要性。关于数据分析重要性的宣介活动可以通过多种形式:包括视频教学、在线研讨会以及关于数据分析实践的社群共享,或者直接给大家展示可视化分析的结果等。总之,不管通过何种方式,要让大家清楚的认识到高级的数据分析技术可以带来重要的价值应用。

同时,你也可以盘点并梳理一下组织内部现有的分析资源:比如挑选不同部门内部对数据敏感、有一定分析能力的员工;记录组织内部有哪些关键的数据分析技术应用,列出关键的业务应用领域。我们还建议推举出分析领域的专门负责人,由这个人负责主要数据分析战略的落实,保证组织在接下来各个阶段的分析能力建设的成功部署。

第二步进行分析试点

该阶段通过梳理和使用现有的分析资源,明确公司的数据分析能力。通过将组织的现状和将来的战略目标进行对比,确定存在哪些新的机会,分析可以在其中起到关键作用。再进一步,分析团队需要考虑如何使得分析预测的结果更加精确和及时,以及这些分析结果如何在业务中得到更好的应用。

数据分析的整个流程是该阶段的关键,一定要特别注意。我们既要进行深入的数据探索和建模,还要考虑模型的修正、部署以及监督应用;通过详细回顾分析的整个流程,您将有可能发现哪里存在不足,以及哪些地方需要改进,进而形成数据分析相关的规章制度和相关流程。

第三步组建分析团队

组建内部自发的分析团队,并鼓励形成凝聚力强的分析社区。内部的分析专家可以相互进行探讨,对组织内部数据分析建设提出建议,并通过有效的维系促进分析能力的建设和发展。

小组会议,研讨会以及用户交流会或者博客等形式都有助于提升数据分析的应用和升级,在分析能力建设的后期,交流对于公司整体数据分析能力的提升发挥着极其重要的杠杆作用。

第四部通过分析预测调整战略部署

到了该阶段就意味着所有数据分析相关的基础架构和配备都已经部署完毕,组织根据业务变化的需要可以借助强大的分析能力作出快速响应。 比如针对业务需要的新的模型可以很快的建立和部署应用,而且比以往的预测结果更加精确,从而可以提供更加精准的信息。

在该阶段,分析的目的应该从简单的回答战术性问题转移到更具前瞻性的战略问题上来,该阶段的分析包括对一些有可能发生的情景进行测试,通过模拟、优化以及其他前沿的统计学方法排除一些发生概率低的可能性结果。该工作可以通过一个集中的分析平台来进行。除此之外,不同形式的海量数据的应用,包括文本数据和社交数据,也可以帮助预见未来,并激发创新性的想法以吸引消费者,同时赢得市场先机。

结论

要完成以上四步的实施并非易事,也不能一蹴而就。分析能力的培养需要领导层的决心和信心以及其持续性的支持和努力,另外对人才储备和分析工具进行的投资同样也是成功的关键。

提升组织的分析能力成熟度需要多方面的工作,包括合理的人才配备、分析流程以及分析技术的部署和应用更关键的是数据资产的质量和完备性。但是高效灵活的数据分析带来的回报是不可估量的—有可能是决定性的成败!

JMP拥有丰富的行业项目经验和雄厚的技术(培训)团队,能够有效的结合工具、知识以及方法论,通过项目试点导入数据分析意识,形成数据分析文化,培养数据分析团队, 达到快速有效地将零散的市场数据、用户数据等转化成决策支持数据,进而促进数据分析在企业内部更深层次的发展应用。JMP将致力于帮助客户建立长远的数据分析战略,确保数据分析能力持续有效的助力客户的业务发展需求.

原文发布时间为:2014年10月27日
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
目录
相关文章
|
项目管理 数据可视化 uml
6 种常用的项目管理模式
6 种常用的项目管理模式   项目管理是按客观经济规律对项目建设全过程进行有效的计划、组织、控制、协调的系统管理活动。从内容上看,它是项目建设全过程的管理,即从项目建议书、可行性研究分析、设计、施工到竣工投产全过程的管理。
1859 0
|
4天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
15天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1312 5
|
2天前
|
监控 JavaScript Java
基于大模型技术的反欺诈知识问答系统
随着互联网与金融科技发展,网络欺诈频发,构建高效反欺诈平台成为迫切需求。本文基于Java、Vue.js、Spring Boot与MySQL技术,设计实现集欺诈识别、宣传教育、用户互动于一体的反欺诈系统,提升公众防范意识,助力企业合规与用户权益保护。
|
14天前
|
机器学习/深度学习 人工智能 前端开发
通义DeepResearch全面开源!同步分享可落地的高阶Agent构建方法论
通义研究团队开源发布通义 DeepResearch —— 首个在性能上可与 OpenAI DeepResearch 相媲美、并在多项权威基准测试中取得领先表现的全开源 Web Agent。
1356 87
|
2天前
|
JavaScript Java 大数据
基于JavaWeb的销售管理系统设计系统
本系统基于Java、MySQL、Spring Boot与Vue.js技术,构建高效、可扩展的销售管理平台,实现客户、订单、数据可视化等全流程自动化管理,提升企业运营效率与决策能力。
|
3天前
|
弹性计算 安全 数据安全/隐私保护
2025年阿里云域名备案流程(新手图文详细流程)
本文图文详解阿里云账号注册、服务器租赁、域名购买及备案全流程,涵盖企业实名认证、信息模板创建、域名备案提交与管局审核等关键步骤,助您快速完成网站上线前的准备工作。
192 82
2025年阿里云域名备案流程(新手图文详细流程)