斯诺登机密文件揭秘加拿大网络战争系统

简介:

据外媒报道,日前,由斯诺登提供的机密文件又向外界曝光了加拿大政府在处理网络战争和反恐这两大问题的信息。文件非常清楚地显示了加拿大通信安全局(CSE)开发了大量用于网络战争的工具和武器。它们不仅可以关闭或毁掉目标网络,而且还能匿名控制它们。报道披露,这些网络工具像是专门为交通、银行、电网等系统攻击开发而出。

斯诺登机密文件揭秘加拿大网络战争系统

不过看起来,CES使用的大部分网络工具都是从NSA那里借来的,但即便如此,它在别国网络入侵中表现得异常活跃。据悉,“中东、南美、欧洲、墨西哥”则都是加拿大的监控对象。

而在此前已经曝光的文件中,加拿大这个名字也已出现过多次,人们常常能在NSA的监控项目中看到它的名字,另外,它被指利用WiFi追踪机场乘客。

作者:佚名


来源:51CTO

相关文章
|
23天前
|
机器学习/深度学习 数据采集 人工智能
未来的守护神:AI驱动的网络安全之盾,如何用智慧的光芒驱散网络黑暗势力?揭秘高科技防御系统背后的惊天秘密!
【10月更文挑战第3天】随着网络技术的发展,网络安全问题日益严峻,传统防御手段已显不足。本文探讨了构建AI驱动的自适应网络安全防御系统的必要性及其关键环节:数据采集、行为分析、威胁识别、响应决策和执行。通过Python库(如scapy、scikit-learn和TensorFlow)的应用实例,展示了如何利用AI技术提升网络安全防护水平。这种系统能够实时监控、智能分析并自动化响应,显著提高防护效率与准确性,为数字世界提供更强大的安全保障。
47 2
|
2月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
83 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
2月前
|
安全 算法 网络安全
网络安全与信息安全:构建数字世界的坚固防线在数字化浪潮席卷全球的今天,网络安全与信息安全已成为维系社会秩序、保障个人隐私和企业机密的关键防线。本文旨在深入探讨网络安全漏洞的本质、加密技术的前沿进展以及提升公众安全意识的重要性,通过一系列生动的案例和实用的建议,为读者揭示如何在日益复杂的网络环境中保护自己的数字资产。
本文聚焦于网络安全与信息安全领域的核心议题,包括网络安全漏洞的识别与防御、加密技术的应用与发展,以及公众安全意识的培养策略。通过分析近年来典型的网络安全事件,文章揭示了漏洞产生的深层原因,阐述了加密技术如何作为守护数据安全的利器,并强调了提高全社会网络安全素养的紧迫性。旨在为读者提供一套全面而实用的网络安全知识体系,助力构建更加安全的数字生活环境。
|
1天前
|
监控 安全 测试技术
网络信息系统的整个生命周期
网络信息系统规划、设计、集成与实现、运行维护及废弃各阶段介绍。从企业需求出发,经过可行性研究和技术评估,详细设计系统架构,完成设备安装调试和系统集成测试,确保稳定运行,最终安全退役。
9 1
网络信息系统的整个生命周期
|
2天前
|
机器学习/深度学习 存储 运维
图神经网络在复杂系统中的应用
图神经网络(Graph Neural Networks, GNNs)是一类专门处理图结构数据的深度学习模型,近年来在复杂系统的研究和应用中展现了强大的潜力。复杂系统通常涉及多个相互关联的组件,其行为和特性难以通过传统方法进行建模和分析。
13 3
|
1天前
|
编解码 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(10-2):保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS
保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现
|
2月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
107 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
2月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
92 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
86 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
2月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
79 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台