解读大数据技术面临的三个重要技术问题

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

大数据技术面临的三个重要技术问题,我们一起来看看。当今,大数据的到来,已经成为现实生活中无法逃避的挑战。每当我们要做出决策的时候,大数据就无处不在。大数据术语广泛地出现也使得人们渐渐明白了它的重要性。大数据渐渐向人们展现了它为学术、工业和政府带来的巨大机遇。与此同时,大数据也向参与的各方提出了巨大的挑战,首先是大数据技术面临的三个重要问题:

 解读大数据技术面临的三个重要技术问题

一、如何利用信息技术等手段处理非结构化和半结构化数据

大数据中,结构化数据只占 15%左右,其余的 85%都是非结构化的数据,它们大量存在于社交网络、互联网和电子商务等领域。另一方面,也许有 90%的数据来自开源数据,其余的被存储在数据库中。大数据的不确定性表现在高维、多变和强随机性等方面。股票交易数据流是不确定性大数据的一个典型例子。

大数据刺激了大量研究问题。非结构化和半结构化数据的个体表现、一般性特征和基本原理尚不清晰,这些都需要通过包括数学、经济学、社会学、计算机科学和管理科学在内的多学科交叉来研究和讨论。给定一种半结构化或非结构化数据,比如图像,如何把它转化成多维数据表、面向对象的数据模型或者直接基于图像的数据模型?值得注意的是,大数据每一种表示形式都仅呈现数据本身的侧面表现,并非全貌。

如果把通过数据挖掘提取 “粗糙知识” 的过程称为 “一次挖掘” 过程,那么将粗糙知识与被量化后主观知识,包括具体的经验、常识、本能、情境知识和用户偏好,相结合而产生“智能知识”过程就叫做“二次挖掘”。从“一次挖掘”到“二次挖掘”类似事物“量”到“质” 的飞跃。

由于大数据所具有的半结构化和非结构化特点,基于大数据的数据挖掘所产生的结构化的 “粗糙知识”(潜在模式)也伴有一些新的特征。这些结构化的粗糙知识可以被主观知识加工处理并转化,生成半结构化和非结构化的智能知识。寻求 “智能知识” 反映了大数据研究的核心价值。

二、如何探索大数据复杂性、不确定性特征描述的刻画方法及大数据的系统建模

这一问题的突破是实现大数据知识发现的前提和关键。从长远角度来看,依照大数据的个体复杂性和随机性所带来的挑战将促使大数据数学结构的形成,从而导致大数据统一理论的完备。从短期而言,学术界鼓励发展一种一般性的结构化数据和半结构化、非结构化数据之间的转化原则,以支持大数据的交叉工业应用。管理科学,尤其是基于最优化的理论将在发展大数据知识发现的一般性方法和规律性中发挥重要的作用。

大数据的复杂形式导致许多对 “粗糙知识” 的度量和评估相关的研究问题。已知的最优化、数据包络分析、期望理论、管理科学中的效用理论可以被应用到研究如何将主观知识融合到数据挖掘产生的粗糙知识的 “二次挖掘” 过程中。这里人机交互将起到至关重要的作用。

三、数据异构性与决策异构性的关系对大数据知识发现与管理决策的影响

由于大数据本身的复杂性,这一问题无疑是一个重要的科研课题,对传统的数据挖掘理论和技术提出了新的挑战。在大数据环境下,管理决策面临着两个 “异构性” 问题:“数据异构性” 和 “决策异构性”。传统的管理决定模式取决于对业务知识的学习和日益积累的实践经验,而管理决策又是以数据分析为基础的。

大数据已经改变了传统的管理决策结构的模式。研究大数据对管理决策结构的影响会成为一个公开的科研问题。除此之外,决策结构的变化要求人们去探讨如何为支持更高层次的决策而去做 “二次挖掘”。无论大数据带来了哪种数据异构性,大数据中的 “粗糙知识” 仍可被看作 “一次挖掘” 的范畴。通过寻找 “二次挖掘” 产生的 “智能知识” 来作为数据异构性和决策异构性之间的桥梁是十分必要的。探索大数据环境下决策结构是如何被改变的,相当于研究如何将决策者的主观知识参与到决策的过程中。

大数据是一种具有隐藏法则的人造自然,寻找大数据的科学模式将带来对研究大数据之美的一般性方法的探究,尽管这样的探索十分困难,但是如果我们找到了将非结构化、半结构化数据转化成结构化数据的方法,已知的数据挖掘方法将成为大数据挖掘的工具。


原文发布时间为:2017年1月13日

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
9天前
|
程序员
中国程序员面临的挑战:行业现状与个人发展
在中国,程序员作为技术行业的中坚力量,他们面临的挑战和困境值得关注。这些挑战不仅影响着程序员的个人发展,也关系到整个技术行业的进步。本文将探讨中国程序员面临的一些主要问题,并分析这些问题背后的原因,同时探讨可能的解决方案。
22 2
|
3月前
|
数据采集 机器学习/深度学习 人工智能
CIO 们的九大关键经验:在运营、创新、IT 与业务融合及 GenAI 运用中,等待你揭开的神秘面纱是什么?
【8月更文挑战第19天】作为企业数字化转型的技术观察者,总结CIO们在运营、创新、IT业务融合与GenAI应用中的九大经验:一是优化流程提升效率;二是创新需紧贴业务战略;三是技术须响应业务需求;四是GenAI应用要场景化;五是保障数据质量与安全;六是重视人才培养;七是寻求外部专业合作;八是合理规划预算;九是持续评估改进。这些洞见为企业数字化转型提供了重要参考。
48 0
|
4月前
|
负载均衡 安全 应用服务中间件
应用交付挑战加剧,谈谈F5如何助企业拥抱现代应用
应用交付挑战加剧,谈谈F5如何助企业拥抱现代应用
47 0
|
5月前
|
机器学习/深度学习 人工智能 安全
2024年IT领导者将面临的八大挑战
2024年IT领导者将面临的八大挑战
|
存储 人工智能 运维
带你读《生命科学行业云上解决方案及最佳实践》——生命科学行业面临的痛点与挑战
带你读《生命科学行业云上解决方案及最佳实践》——生命科学行业面临的痛点与挑战
186 0
|
存储 人工智能 开发框架
爱数:以开源应对领域认知的普惠价值与百花齐放
爱数:以开源应对领域认知的普惠价值与百花齐放
|
运维 供应链 安全
互联网时代研发效能的挑战及应对之道| 学习笔记
快速学习互联网时代研发效能的挑战及应对之道
互联网时代研发效能的挑战及应对之道| 学习笔记
|
SQL 存储 DataWorks
浅谈-大数据工程师面临的困境和要学习的技术
读书的时候,语文老师总会让同学看看作者的生平简介,谈谈作者为什么会写出这篇文章,文章诞生的背景是什么背景,一方面是让同学理解文章,另外一方面是让同学感同身受。 鄙人,不是大厂,也不算外包,算是靠在阿里系的一家创业公司的交付部门的小小大数据工程师,心比天高,命比纸薄。 当然,也和上学没有好好学习有关系,怨不得其他人。 回到正题,咋们先从我的个人经历聊一下大数据工程师现在面临的困境和我的一些解决思路。
339 0
|
运维 监控 安全
圆桌对话:云时代下,企业运维面临的挑战与机遇
四位企业运维大咖展开对话,讨论“云时代下,企业运维面临的挑战与机遇”。
圆桌对话:云时代下,企业运维面临的挑战与机遇
|
开发框架 供应链 Oracle
不重视技术,何谈掌握核心技术?
不重视技术,何谈掌握核心技术?
下一篇
无影云桌面