大数据分析价值渐现 企业应用需以客户为中心

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

ZDNET至顶网CIO与应用频道 05月18日 北京消息(文/王聪彬):在全球化的过程中世界已经变成了一个平面、一张网、一朵云,在其中数据就像血液一样不停的流动着。对于企业而言大数据分析可以很好地优化业务,在降低成本的同时提高用户体验,当然大数据分析应用到具体企业时也需要根据不同的业务特性进行结合,未来企业中以客户为中心的大数据应用将成为重点方向。

大数据分析辅助业务转型

温水煮青蛙的故事估计很多人都知道,在安逸的环境中很容易缺乏危机意识,企业也是相同,但如何才能不做温水青蛙?

企业中已经有越来越多的高管开始关注IT,不仅限于CIO。而在信息爆炸的年代,企业需要更多的数据科学家来进行数据分析,甚至一些企业还设立了CDO(首席数据官)的职位,对大数据和分析进行单独的管控。

这相对于没有数据提供参考往往依靠直觉和过往的经验作出决策的企业,他们有个大的几率走进不可挽回的误区,而利用大数据和分析则可以更好、更快速的对业务和市场把脉。

2014年4月埃森哲调查了全球高管眼中大数据的最大作用,其中89%的高管认为大数据会彻底改变做生意的方式,就像互联网一样,他们还相信会有其他巨大变化。

大数据分析价值渐现 企业应用需以客户为中心

业务转型是目前大多数企业的普遍需求,大数据分析不仅可以优化访问、加快决策、最大程度提高可用性,还可以辅助业务转型。但企业在使用大数据分析时也并没有想象的那样简单,使用其实现业务转型需要注意三点:

一、决策文化改变,以数据驱动决策

二、确保分析数据的安全性和准确性

三、大数据分析平台应用

越来越多的企业已经意识到之一点,但企业的种类多种多样,针对于不同企业业务大数据分析应用也有所不同。所以未来企业需要在了解业务的同时,将业务与大数据分析进行结合,以创造更多价值。

大数据应用与业务相结合

目前在传统行业中金融、电信、政府、交通、医疗已经成为大数据分析使用的主力。

以金融行业为例,通过大数据技术可以把银行的一些历史数据转换成活数据加以利用。当然金融企业也在尝试利用社交媒体的信息进行分析,这可以了解不同区域的用户对于理财的需求,以便企业可以基于不同区域提供符合该区域特色的理财服务。

民生银行作为中国第一家主要由非国有企业创办的银行,年交易量和客户账户数量正在以50%和30%的速度增长。面对持续的高速增长,其所有业务都面临着如何快速响应客户和保证7*24小时可用性。

民生银行意识到要解决业务不断增长带来的问题,就必须彻底改造现有银行系统和基础设施,尤其是原有银行系统已经越来越缺少灵活应对市场变化和客户需求的能力。

民生银行通过SAP银行业解决方案以单一面向服务的架构(SOA)平台交付,提高银行交易流程的灵活性。在硬件上配以IBM AIX操作系统的IBM Power 780服务器。借助先进的 IBM POWER7+TM处理器技术, 支持最为严苛的工作负载,具备大型机的可靠性和可用性。

民生银行还采用了IBM PowerVM虚拟化技术充分利用服务器资源,将多个应用合并到一个服务器上,提供更加灵活、动态的IT基础设施。使其可以迅速响应不断变化的业务需求,加快产品和服务的迭代速度。

同时利用IBM DB2高可用性灾难恢复(HADR)功能防止数据库中的数据丢失,并且保证故障后的款塑恢复,时间低于五分钟。

民生银行只是其中一个案例,还有更多的企业正在使用着大数据分析帮助企业决策,提升用户体验,并以客户为中心造就越来越多的新型商业模式。

总结:

各行各业都开始大数据的应用已经毋庸置疑,这也让大数据分析对于企业基础架构的挑战同样迫在眉睫。IBM的服务器和存储架构则可以有效帮助企业解决大数据分析中存在的可靠性、可用性等诸多问题。支持安全共享的方式访问数据,对不同工作负载进行快速分析,以及最大程度提高信息的可用性,并且针对企业的行业属性和具体业务,制定相关的行业解决方案。

原文发布时间为:2015年05月18日
本文作者:王聪彬
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
104 2
|
2天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
40 15
|
8天前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
7天前
|
分布式计算 DataWorks 搜索推荐
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
43 4
|
26天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
63 4
|
27天前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
34 4
|
28天前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
185 5
|
1月前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
147 14
|
1月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
113 2
|
1月前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。