企业应该如何在大数据基础架构方面做出选择?

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

如果询问十家公司他们为了运行大数据负载需要使用怎样的基础架构,那么可能会得到十种不同的答案。现在这个领域当中几乎没有可以遵循的原则,甚至没有可以参考的最佳实践。

不管是从资源还是从专业性方面来说,大数据分析已经成为基础架构领域当中真正的难题。顾名思义,大数据分析工具所针对的数据集合,规模将会非常庞大,并且需要大量的计算、存储和网络资源来满足性能需求。但是这些大数据工具通常是由超大规模企业开发的,这些企业并不存在普通企业需要考虑的同等级安全问题和高可用性问题,而主流IT企业还没有深入了解这些工具,再加上大数据在投资回报率方面的不确定性,导致只有非常少的企业愿意在大数据方面进行投入。

此外,即便对于曾经在Hadoop、Spark和类似产品上运行过大数据集群的部分企业来说,也会在大数据基础架构方面遇到技术和业务方面的挑战。

大数据带来大问题

一家大型远程通讯提供商正在构建一种新的数字服务,预计在今年年底正式推出,并且准备使用Hadoop来分析这种服务所产生的内容、使用情况和收入(广告服务)数据。但是由于这种服务是全新的,因此很难分析应该使用哪种大数据基础架构,负责这个项目的技术副总裁表示。

“对于一个还没有推出的项目来说,我们不可能进行任何容量规划,”他说。

确实,现在很多大数据项目仍然处于初级阶段。“大多数大数据项目的性质比我们想象的还要低,” 可扩展存储基础架构提供商Coho Data CTO Andrew Warfield表示。

即便企业还不是十分了解大数据技术,但这并不意味着企业不应该在大数据方面投入精力。“但是运行这种技术可能面临着很大风险,提前认识到这点非常重要,” Warfield说,他认为企业应该提前考虑基础架构方面的因素。

对于这家远程通讯提供商来说,他们将会采用一种渐进的方式,使用来自于BlueData Software的软件在商用硬件环境当中运行大数据集群,这样就能够从现有的存储系统上访问数据了。

无处不在的数据

如果数据来自于云,那么当然可以直接在云中进行分析;如果数据全部位于本地,那么底层的基础架构也应该位于本地。但是如果数据分散在不同位置,那么无疑会使得基础架构更加复杂。

远程通讯提供商的服务将会同时使用来自于云和本地的数据。对于任何大数据解决方案来说,考虑到合规性、节省时间和网络带宽等因素,能够同时支持两种数据来源都是十分重要的。“同步生产环境当中的数据是一件非常困难的事情,”这位副总裁说,“我们希望将所有的实例全都指向一个单一数据源。”

此外,虽然数据科学家想要分析的信息是可用的,但是现在还不能进行使用,因为其位于大数据计算工具无法访问的存储基础架构当中,Warfield说。一种解决方案是存储硬件使用Hadoop Distributed File System或者RESTful API这样的协议公开这些数据。

注意延迟

对于特性类型的大数据分析来说,将数据从存储阵列移动到计算环境所花费的时间将会对性能造成严重影响。但是如果不将数据跨越整个网络移动到计算环境当中,而是将应用程序移动到数据附近以降低延迟,将会怎样呢?

将计算环境移动到数据附近并不是一种全新的概念,但是现在出现了一种前所未有的实现方式:Docker。比如Coho Data和Intel通过合作证明了这种概念的有效性,在一个大型金融服务公司当中,使用Docker格式封装计算节点,之后在上面直接运行Hadoop负载。

在存储阵列上直接运行Docker容器,这样做的意义在于直接对附近的数据进行分析,而不再需要跨网络移动数据,同时利用任何可用的计算资源。“相比于其他存储平台来说,大数据平台的CPU使用率通常会很高,” Warfield说。“更何况如果你将闪存加入其中,那么问题就会变成‘我该如何从这种资源当中获得更多价值?’”

直接在存储阵列当中运行容器化应用程序是一件非常有趣的事情,但是需要提前对负载进行认真评估,以确保其能够很好地适应当前环境,为建筑行业提供文档管理服务的Signature Tech Studios公司副总裁Bubba Hines说。这种服务基于Amazon Web Services,使用来自于Zadara Storage的存储服务。这家公司最近开始评估新的Zadara Container Service,其中容器化应用程序运行在存储阵列上,可以直接访问本地磁盘。根据Hines的想法,现在有几种可能的使用情况:在存储阵列上运行其灾难恢复软件的容器版本来持续监控用户数据和工作方面的变化,更改或者验证主要存储数据。

但是如果使用Zadara Container Service处理全部数据将没有什么意义。Signature Tech Studio的系统正在按照计划执行数据转换,并且已经实现大规模容器化了。但是“我们可能不会将所有Docker容器移动到Zadara容器服务当中,因为从体积和规模方面考虑这样做并没有意义,”Hines说。“我们必须寻找能够真正从降低延迟当中获利的负载。”

原文发布时间为:2015年10月26日
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
23天前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
1月前
|
大数据
【赵渝强老师】大数据主从架构的单点故障
大数据体系架构中,核心组件采用主从架构,存在单点故障问题。为提高系统可用性,需实现高可用(HA)架构,通常借助ZooKeeper来实现。ZooKeeper提供配置维护、分布式同步等功能,确保集群稳定运行。下图展示了基于ZooKeeper的HDFS HA架构。
|
7天前
|
监控 数据可视化 架构师
为什么企业需要开展架构治理?
随着数字化转型加速,企业面临的技术和业务环境日益复杂,传统架构难以应对快速变化的需求。企业架构治理成为数字化转型的关键,通过确保技术与战略对接、优化资源利用、降低风险和复杂性,提升企业灵活性、效率和创新能力,支持快速响应市场变化,推动数字化转型成功。
47 7
为什么企业需要开展架构治理?
|
7天前
|
监控 数据可视化
如何通过建模工具实现企业架构治理全流程管理
企业架构治理工具通过构建统一的架构语言、可视化建模、流程管理、资源整合和多场景分析,实现企业架构的全生命周期管理。该工具赋能企业数字化转型,确保业务、平台、数据及技术相互耦合闭环,提供从规划到决策的一站式服务,助力提升业务运营、优化组织管理和加速数字化建设。
22 2
如何通过建模工具实现企业架构治理全流程管理
|
7天前
|
存储 SQL 分布式计算
大数据时代的引擎:大数据架构随记
大数据架构通常分为四层:数据采集层、数据存储层、数据计算层和数据应用层。数据采集层负责从各种源采集、清洗和转换数据,常用技术包括Flume、Sqoop和Logstash+Filebeat。数据存储层管理数据的持久性和组织,常用技术有Hadoop HDFS、HBase和Elasticsearch。数据计算层处理大规模数据集,支持离线和在线计算,如Spark SQL、Flink等。数据应用层将结果可视化或提供给第三方应用,常用工具为Tableau、Zeppelin和Superset。
117 8
|
1月前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
191 3
【赵渝强老师】基于大数据组件的平台架构
|
1月前
|
人工智能 运维 算法
引领企业未来数字基础架构浪潮,中国铁塔探索超大规模分布式算力
引领企业未来数字基础架构浪潮,中国铁塔探索超大规模分布式算力
|
7天前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
23 0
|
8天前
|
弹性计算 负载均衡 安全
企业业务上云经典架构方案整体介绍
本次课程由阿里云产品经理晋侨分享,主题为企业业务上云经典架构。内容涵盖用户业务架构现状及挑战、阿里云业务托管经典架构设计、方案涉及的产品选型配置,以及业务初期如何低门槛使用。课程详细介绍了企业业务上云的全流程,帮助用户实现高可用、稳定、可扩展的云架构。
|
29天前
|
Cloud Native 持续交付 云计算
云原生架构:重塑企业IT的未来####
本文深入探讨了云原生架构的兴起背景、核心理念、技术优势以及在现代企业IT系统中的应用实践。云原生架构以其高度的灵活性、可扩展性和敏捷性,正逐步成为企业数字化转型的关键驱动力。通过容器化、微服务、持续集成/持续部署(CI/CD)等关键技术,云原生架构能够加速软件开发周期,提升系统稳定性和运维效率,为企业带来前所未有的商业价值。 ####
34 0

热门文章

最新文章