数据开放共享推动大数据应用 需打破条块分割

本文涉及的产品
数据安全中心,免费版
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

全国政协委员、神州数码董事长郭为提出两项议案,就涉及数据开放共享和智慧城市建设。

数据开放共享推动大数据应用 亟需打破条块分割

郭为表示,2014年,在俞正声主席的主持下,全国政协就大数据及其应用召开了有关部委参加的专题例会。但在具体实践中,遇到了一些问题,对此他做进一步的反映:

一、数据开放的必要性

随着互联网深入应用、云计算走向成熟,以及智能手机为代表的信息设备大量普及,中国社会初步形成了信息社会的雏形,为中国的产业升级、社会转型、改革创新奠定了基础。但也对数据信息的安全与共享应用产生了强烈的需求。因此,迫切需要针对数据开放采取从立法、建立标准、展开执行监督等一些列的措施,一方面规范数据开放,另一方面形成数据开放的倒逼机制,推动各级政府及相关社会组织实施数据开放。

二、数据开放的意识还比较薄弱

许多政府部门没有意识到只有共享的数据资源,才能释放数据的价值,因此,不重视数据开放,也不关心部门之外的数据需求,多一事不如少一事。

一些数据富集部门将数据视作部门私产,不愿意开放,或者希望获取更大的商业利益,或主导权。

一些较为权威的部门,出于数据安全的惯性使然,不愿意开放数据。

这些意识问题严重阻碍数据开放与共享,影响政府的综合治理水平,应引起各级政府一把手的高度重视。

三、客观因素造成的数据开放壁垒

长期以来,我们国家的信息化是以部门为中心展开的,客观上形成了行业垂直的信息化体系,在地方上形成了条块分割的信息孤岛,数据开放需要纵向层层审批,造成了信息在一个区域平台共享的难度。

数据开放是一个新兴事物,缺乏至上而下的法律法规、执行标准、开放标准,形成许多地方不知道怎样开放,开放什么,开放程序是什么、管理方式、考核评价标准是什么,等等。因此,地方推进上无所适从。

行业、区域发展水平不一致,造成信息化能力差异很大。社会公共服务产品的空缺,也形成了一些部门没有信息化动力,许多数据还仍然以纸质材料的形式存在于档案库中,没有数据化,更谈不上数据开放和数据服务。

数据安全方面的认识不一致,责任体系不清晰,造成许多部门不愿意开放数据,或以安全为由拒绝开放数据。

四、数据开放的实施建议

1. 展开数据开放的立法工作,通过人大立法机构,建立数据开放立法推进委员会,尽快启动数据开放立法,建立数据开放标准、界定数据开放边界,确实有效地建立数据开放的法制基础。

2. 用信息化公共信息服务平台(产品),倒推政府相关部门的信息化,从而建立数据开放的基础。税务、工商等部门之所以信息化程度高,与他们有巨大的社会服务压力有密切关系,信息化落后的部门很大程度上是因为为社会提供的公共服务产品缺乏,而造成信息化动力弱,提高服务能力,将逼迫这些部门加快信息化的步伐,增强数据开放意识。

3.在一些城市建立城市试点“城市数据资源管理中心”,在网信办的监督下,运用PPP模式,以企业为建设和运营主体,将政府、社会的数据汇聚和管理,建立城市级开放数据的统一管理平台,为数据应用创造条件。

4.从立法上,将政府内部网和“城市数据资源管理中心”的安全边界划分清楚,由“数据资源管理中心”从法律上承接其所承载数据安全的法律责任,政府内部网的信息安全由各数据采集应用部门承接相应的法律责任,从而明确数据安全的责任主体。

5.充分利用“数据资源管理中心”的公益价值,服务于民众、企业和政府有关部门,鼓励创业者利用数据资源创新创业,支持传统行业利用数据资源转型升级,通过数据资源全社会(政府、企业、个人及社会组织)的共享共治,服务与中央提出的创新国家治理体系的建设的目标。


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
5天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
50 7
|
5天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
15 2
|
18天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
60 1
|
1月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
91 1
|
12天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
30 3
|
12天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
42 2
|
15天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
49 2
|
17天前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
49 2
|
19天前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。