10个商业活动中需要的数据分析工具

简介:

虽然收集和分析“大数据”存在一些分析和技术方面的挑战,但事实上大部分公司已经能够应对这种挑战。这是因为有一些非常强大的分析工具都是免费、开源的,可以充分利用这些工具来提升自己的能力。

Alex Jones推荐了10个针对企业的大数据分析工具,这些工具不仅免费、使用方便,而且具有强大的功能和良好的资源。

1、Tableau Public

10个商业活动中需要的数据分析工具

这是一个简单直观的可视化工具。它在商业活动中表现的很强大,因为它通过可视化来表达。它有足够的空间和免费使用时长让你体验,在分析的过程中,Tableau的图片呈现可以让你快速的调查一个假设、验证你的直觉,做更好的商业决策。

2、OpenRefine

10个商业活动中需要的数据分析工具

它是以前的GoogleRefine,OpenRefine是一款数据清理软件,可以对准备好的一切数据进行分析。例如最近我清理了一个含有化学名 称的数据库,并且各行有不同的拼写、大小写、空格等,用计算机来处理非常困难,幸运的是, OpenRefine包含许多聚类算法,对这个问题可以快速解决。

3、KNIME

10个商业活动中需要的数据分析工具

KNIME可以通过可视化编程的方式来操作、分析和建模。不仅可以写代码。你还可以在操作中建立联系节点。基本上你只需要将功能模块拖拽到工作区, 并将模块按照运行流程连接起来,就可以实现以往编程才能实现的工作。更重要的是,KNIME可以扩展到运行R, python, text mining,chemistry data等等,这可以让你选择用更先进的编码来分析。
Tip:读取CSV文件时需要用“File Reader”代替CSV阅读器。

4、RapidMiner

10个商业活动中需要的数据分析工具

和KNIME类似, RapidMiner通过可视化编程操作,建模和分析数据。最近,RapidMiner赢得kdnuggets的软件调查。

5、GoogleFusion Tables

10个商业活动中需要的数据分析工具

这是针对数据分析、大数据集的可视化和映射的一个非常强大的工具,谷歌的地图软件在其中起着重要作用。拿下面这张图来说,这是一张墨西哥湾石油生产平台的图,我只需要上传数据,Google Fusion Tables确认维度和经度的数据之后就开始工作了。

6、NodeXL

10个商业活动中需要的数据分析工具

NodeXL是针对网络和关系的可视化分析软件。想想科技巨头地图上代表LinkedIn或Facebook的连接,NodeXL提供了进一步精确的计算。如果你在不需要那么先进的东西,你可以看看Google Fusion Tables,或者尝试用Gephi。

7、import.io

10个商业活动中需要的数据分析工具


从网上抓取网页和信息曾经是技术人员的专利,现在用import.io,每个人都可以从网站和论坛获取数据。简单提出你想要的数据,几分钟之后import.io就可以通过你的搜索知道你在找什么,从而会挖掘、提供数据用于你的分析或输出。

8、Google Search Operators

10个商业活动中需要的数据分析工具

不可否认谷歌最初是一个强大的资源和搜索公司,运营商可以让你快速过滤掉谷歌的结果得到的最有用的和相关的信息。比如说,你正想从ABC咨询里寻找一个今年的数据科学报告。如果我们认为该报告可能是PDF格式的,可以搜索
“数据科学报告”网站::ABCConsulting.com Filetype:PDF
然后在下面的搜索栏,使用“搜索工具”来屏蔽去年的结果。这在发现新的信息或市场研究方面非常有用。

9、Solver

Solver是一个在excel中做优化和线性规划的工具,允许你设置一些约束条件(例如不超过什么价格,要在哪天之前完成之类)。虽然更有效的优化可能会需要另一个程序(例如R的优化包),但是Solver应用范围比较广。

10、WolframAlpha

10个商业活动中需要的数据分析工具

Wolfram Alpha的搜索引擎是一个隐藏的宝石,可以媲美苹果的Siri。WolframAlpha类似于不那么智能的Google,对科技搜索提供详细的回复,对微积分作用也能快速的搜索。对企业用户来说,它提供了信息图表,对历史价格、商品信息、主题概述。

虽然这些工具使得分析更简单,但他们只是把信息放进去然后进行分析,这些你自己也可以做到。所以用一点时间来学习新的技巧,用这些工具来提高自己完成工作。


本文作者:佚名

来源:51CTO

相关文章
|
26天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
42 2
|
26天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
27 2
|
5月前
|
文字识别 算法 数据挖掘
视觉智能开放平台产品使用合集之对于统计研究和数据分析,有哪些比较好的工具推荐
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
|
4月前
|
机器学习/深度学习 数据可视化 数据挖掘
Python数据分析工具有哪些
【7月更文挑战第3天】Python数据分析工具有哪些
173 58
|
3月前
|
数据可视化 算法 数据挖掘
【python】商业数据聚类-回归数据分析可视化(源码+数据)【独一无二】
【python】商业数据聚类-回归数据分析可视化(源码+数据)【独一无二】
|
3月前
|
SQL 数据挖掘 关系型数据库
SQL中的聚合函数:数据分析的强大工具
【8月更文挑战第31天】
110 0
|
3月前
|
人工智能 供应链 数据挖掘
解锁商业数据金矿!AI Prompt秘籍:让你的数据分析秒变未来视野
【8月更文挑战第1天】在数据驱动的时代,AI Prompt技术正革新商业数据分析领域,使其从梦想变为现实。AI Prompt通过预设指令增强AI模型的任务执行能力,大幅提升数据处理效率与准确性。以零售业为例,借助AI Prompt技术,企业能迅速分析销售数据,预测市场趋势,并优化决策。示例代码展示了如何利用AI Prompt进行销售预测及库存调整建议,显著提升了预测精度和决策效率,为企业带来竞争优势。随着技术进步,AI Prompt将在商业智能中扮演更重要角色。
93 4
|
3月前
|
机器学习/深度学习 人工智能 供应链
💰钱途无量!掌握AI Prompt在商业数据分析中的5大赚钱技巧
【8月更文挑战第1天】在数据驱动的商业时代,掌握AI Prompt技术为企业开启财富之门。本文探讨通过AI Prompt实现商业数据分析中的五大赚钱技巧:1)精准市场预测,利用历史数据预测未来趋势;2)个性化营销,分析客户行为提高转化率;3)优化库存管理,智能调整采购计划降低成本;4)风险预警,实时监测并提出应对策略;5)数据洞察驱动创新,挖掘深层规律引领市场。掌握这些技巧,企业将在竞争中脱颖而出,实现商业价值最大化。
74 2
|
3月前
|
机器学习/深度学习 数据采集 人工智能
🔍深度揭秘!AI Prompt如何重塑商业数据分析,让决策快人一步
【8月更文挑战第1天】在数字化转型中,商业数据分析至关重要。AI Prompt技术作为智能分析的催化剂,通过自然语言指令高效处理大规模数据,挖掘深层信息,加速精准决策。基于深度学习等技术,分析师仅需简单Prompt即可自动完成从数据清洗到生成决策建议的全过程。例如,零售业可通过此技术快速分析销售数据,优化商品陈列。AI Prompt简化流程,降低门槛,使企业能迅速响应市场变化,有望成为商业分析的标准工具,引领高效决策的新时代。
63 2
|
3月前
|
人工智能 数据挖掘 Python
💡灵感爆发!AI Prompt创意引导,让商业数据分析报告也能讲故事
【8月更文挑战第1天】在商业领域, 数据分析报告常被视为枯燥的数据堆砌。但AI技术, 尤其是AI Prompt的创意引导功能, 正革新数据呈现方式。传统报告重准确性轻生动性; 而AI Prompt创意引导下的报告则如电影般, 通过故事化叙述使复杂洞察变得生动有趣。例如分析电商平台季节性销售时, AI Prompt可以生成主题为“穿越四季购物之旅”的创意指令, 将数据编织成引人入胜的故事篇章, 使读者不仅能获取商业洞察, 更能感受到数据背后的情感与温度, 大大提升报告的吸引力和传播力。这标志着数据分析报告新时代的到来。
76 0
下一篇
无影云桌面