数据分析师?架构师?科学家?大数据时代的热门职业

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

沈阳市大数据局公开招聘110名智慧城市建设信息员,7月7日起至11日报名,引起社会广泛关注,报名网站点击率迅速蹿升。

大数据已是当下信息时代一个非常热的概念,大数据时代到来,将给人才发展带来哪些机会?谁将是未来最热门的人才?大数据时代的热门职业都有哪些?让我们一起来看看吧——

说起大数据,可能你还会觉得云里雾里,实际上,大数据就发生在你我身边,和小编一起先来点入门级的——

你的通话记录、上网记录,会留在三大电信运营商那里;

你的身份、家庭房产信息,会通过刷信用卡而被银行知晓;

你去了哪里,现在哪里,又会通过手机定位系统而泄露,百度、腾讯、阿里是目前大数据的主导拥有者和使用者;

政府也掌握相应的大数据。通过这些数据都勾勒出你的基本面貌,也就是说,你的一举一动尽在大数据掌控中。亲们,有木有觉得害怕?

大数据已深入到日常生活的诸多领域,在许多行业发挥着重要作用。

大数据到底有什么用?

大数据最重要的功能,是能把未来一些不确定性的东西准确地预测出来。

举个例子——2008年,谷歌的一支研发团队利用在网上收集到的海量个人搜索词汇数据,赶在政府流行病学家之前两星期预测了甲型H1N1流感的暴发。这样的事情在以前是不可想象的,掌握了大数据后,谷歌就做到了。

大数据时代,人们的思维方式不再是原有的因果关系,而是相关关系,它的核心是预测,并且不是基于随机样本,而是全体数据,利用计算机技术强大的处理和分析能力为人们提供决策。

大数据时代最需要什么样的人才?

●全球大数据人才荒

美国软件就业市场调查,Big Data(大数据)和 Cloud Computing(云计算)是目前市场上最迫切需要的人才。研究机构Gartner更预测,2015年全球将有440万个巨量资料相关之IT工作职缺,但目前尚未有真正以巨量资料为背景的学科,因此人才缺口恐达三分之二。

“埃森哲”开展的一项调查,研究了美国、中国、印度、英国、日本、巴西和新加坡对数据分析人才的需求发现,到2015年,除中国之外都面临胜任数据分析科学家的净短缺。中国因为需求不足似乎还出现了少量的过剩。

●赋予数字意义的能力

美国USNEWS预测2020年十大最佳职业,第一名即是与巨量数据有关的数据运算人员(数据科学家)。

为了要精算、推演出海量数据库得到结论,除了需要IT、统计背景的人才外,更需要产业专家赋予数字意义,一窥其中奥秘。专家表示,虽说大数据人才时代来临,但别忘了大数据人才市场里看中的是“赋予数字意义的能力”,算法、数学模型可以只学概念,但解读数据的本事却是无可取代的。

●政府和企业的高层管理者

专家提出,一提大数据时代,就认为我们最需要数据技术人才,比如计算机人才和数学工程人才,也是一种错觉。

我们确实很需要数据技术人才,但真正能够帮助政府和企业转变思维、应对大数据挑战的人才不是一个来自IT部门的技术专家,而是政府和企业的高层管理者。对目前的中国来说,对大数据管理人才需求的迫切性要超越对技术人才需求的迫切性。政府和企业的领导者,也要学习用数据思考、说话和管理。

大数据时代的热门职业

下面小编为您介绍大数据时代下的热门职业。不仅具有高收入的特点,也有令人羡慕的时代属性,而且随着大数据的发展,未来会有更多的热门职业涌现。

●数据规划师

在一个产品设计之前,为企业各项决策提供关键性数据支撑,实现企业数据价值的最大化,更好地实施差异化竞争,帮助企业在竞争中获得先机。

●数据工程师

大数据基础设施的设计者、建设者和管理者,他们开发出可根据企业需要进行分析和提供数据的架构。同时,他们的架构还可确保系统能够平稳运行。

●数据架构师

擅长处理散乱数据、各类不相干的数据,精通统计学的方法,能够通过监控系统获得原始数据,在统计学的角度上解释数据。

●数据分析师

职责是通过分析将数据转化为企业能够使用的信息。他们通过数据找到问题,准确地找到问题产生的原因,为下一步的改进找到关键点。

●数据应用师

将数据还原到产品中,为产品所用。他们能够用常人能理解的语言表述出数据所蕴含的信息,并根据数据分析结论推动企业内部做出调整。

●数据科学家

大数据中的领导者,具备多种交叉科学和商业技能,能够将数据和技术转化为企业的商业价值。

看完了以上的内容,如果你也想成为炙手可热的大数据人才,现在就开始努力吧!


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
7天前
|
SQL 分布式数据库 Apache
网易游戏 x Apache Doris:湖仓一体架构演进之路
网易游戏 Apache Doris 集群超 20 个 ,总节点数百个,已对接内部 200+ 项目,日均查询量超过 1500 万,总存储数据量 PB 级别。
网易游戏 x Apache Doris:湖仓一体架构演进之路
|
8天前
|
存储 数据采集 分布式计算
别光堆数据,架构才是大数据的灵魂!
别光堆数据,架构才是大数据的灵魂!
37 13
|
3月前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
308 92
|
17小时前
|
负载均衡 算法 关系型数据库
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
|
5月前
|
大数据
【赵渝强老师】大数据主从架构的单点故障
大数据体系架构中,核心组件采用主从架构,存在单点故障问题。为提高系统可用性,需实现高可用(HA)架构,通常借助ZooKeeper来实现。ZooKeeper提供配置维护、分布式同步等功能,确保集群稳定运行。下图展示了基于ZooKeeper的HDFS HA架构。
126 0
|
2月前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
2月前
|
存储 SQL 分布式计算
MaxCompute 近实时增全量处理一体化新架构和使用场景介绍
MaxCompute 近实时增全量处理一体化新架构和使用场景介绍
|
4月前
|
存储 SQL 分布式计算
大数据时代的引擎:大数据架构随记
大数据架构通常分为四层:数据采集层、数据存储层、数据计算层和数据应用层。数据采集层负责从各种源采集、清洗和转换数据,常用技术包括Flume、Sqoop和Logstash+Filebeat。数据存储层管理数据的持久性和组织,常用技术有Hadoop HDFS、HBase和Elasticsearch。数据计算层处理大规模数据集,支持离线和在线计算,如Spark SQL、Flink等。数据应用层将结果可视化或提供给第三方应用,常用工具为Tableau、Zeppelin和Superset。
1716 8
|
4月前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
155 0
|
5月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集

热门文章

最新文章