大数据应用现状:从发现价值到创造价值

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

大数据

从发现价值到创造价值, 大数据将成为“互联网+” 产业升级的驱动力。 过去,数据的价值主要应用在决策领域,典型应用是商业智能(BI, Business Intelligence)在企业经营管理层面的应用, 即通过数据收集、管理和分析等方法,将数据转化为知识, 发现数据的价值,进而提供决策支持。随着数据体量的不断增加和处理数据能力的提升, 大数据已经成为一类新的资产, 其应用场景正在不断扩宽,除了决策支持、 提高效率等发现价值功能之外,大数据还能创造价值的功能: 一方面,大数据可以帮助提供传统模式下所无法提供的产品, 满足用户需求, 例如大数据完善个人征信体系,帮助金融机构提供消费金融产品;又如千方旗下的掌城科技通过浮动车模型提供实时交通信息服务;另一方面,大数据还可以创造需求, 例如,大数据可以助力实现人工智能, 这是新技术创造的新需求。

大数据延伸 BI 内涵, 提高企业效率

大数据分析结果为企业经营决策提供支持,帮助企业提高效率,这实际上是传统 BI 范畴的延伸。 在人口红利逐渐消失的背景下, 我国企业传统的粗放型模式受到了 越来越大的挑战, 互联网与产业结合背景下的大数据应用将有助于提升企业经营管理效率,助力企业经营从粗放型向集约型转型, 实现产业升级。

大数据促进商业智能的加速发展,这是因为:第一,大数据的分析过程和结果更具有灵活性、可靠性和价值性;第二,大数据的存在提高了企业的商业智能意识, 引导企业主动寻求商业智能的帮助。一些大型企业往往拥有几十个甚至数百个信息系统,其所包含的大量数据反映了企业的日常经营情况,若能加以分析和利用,将为企业创造巨大的价值。

目前,大数据应用可以帮助企业实现户关系管理、盈利能力分析、控制成本、衡量绩效等功能:

客户关系管理(CRM):通过客户信息统计,使企业有针对性的根据客户需求来定制产品和服务,提高客户忠诚度,还可以通过分析偏好挖掘潜在客户;

赢利能力分析:帮助企业分析利润来源、各类产品赢利能力、费用支出是否与销售成正比等;

控制成本:根据统计信息优化流程,如降低库存、减少损耗等,助于企业控制成本;

绩效管理:利于商业智能确立对员工的期望,帮助他们跟踪并管理其绩效。

大数据

大数据

麦肯锡调查显示, 数据挖掘的商业价值巨大, 大数据在美国医疗行业每年能提高 0.7%的生产力,创造约3000 亿美元的价值;在欧洲公共管理部门 ,每年能提高 0.5%的生产力,创造 2500 亿欧元的价值;在美国零售业,每年能提高0.5%-1.0%的生产力 和 60%的净利率。

大数据

大数据满足需求, 市场空间巨大

大数据可以帮助提供过去所无法提供的产品, 满足用户需求。 这种模式在传统产业中比较常见, 过去,一些行业的用户需求虽然存在, 但是由于缺乏有效的技术手段,导致市场参与者无法提供合适的产品迎合市场需求。大数据技术兴起后,将带动一系列创新产品推出市场, 这在各行各业都能找到案例,考虑到传统产业的广度,这将是是一个正在挖掘的巨大市场。

以交通领域的实时交通信息服务和车险定价为例,这两个细分领域的需求本来就存在,但在大数据兴起之前,传统模式无法提供最优的产品,而大数据技术下的产品优化可以更好的满足需求,提高用户体验。

千方科技旗下掌城科技通过大数据技术提供实时交通信息服务。 掌城科技通过向出租车公司和公交车公司购买数据、 向政府部门臵换数据、利用千方自有数据的形式汇集城际交通数据, 基于浮动车的算法模型,对数据进行二次开发,以建立实时交通信息服务平台。 目前, 掌城科技运营着北京、上海等全国 30余个大中城市的实时路况信息,准确率极高。 目前,千方已将交通数据收集从城际交通扩大至整个陆路交通和航空等领域,目标通过大数据技术提供更加全面的公众智慧出行服务。

大数据

大数据技术将参与车险定价,使定价更加科学。随着车联网的兴起,OBD(On-BoardDiagnostic车载诊断系统)等联网的车载设备,成为车联网中的智能节点,连接运动中的人、车和道路环境,读取行车数据,从而分析出车辆能耗、故障等车况信息以及驾驶者的行车习惯:通过G-sensor监测车主的诸如急刹车、急加速和急转弯等危险行为,通过破解Can-bus协议监测车主的诸如转弯不打灯、驻车不拉手刹等不良驾驶习惯,通过GPS获取车辆的位臵信息和里程数据,这些数据将改善车险定价技术与核保政策,提升精准定价能力。

大数据

大数据创造需求,拓宽市场边界

大数据创新产品拓宽市场边界, 供给创造需求。 大数据创造价值功能, 除了提供产品满足市场已经存在的需求外, 基于大数据的新产品还将创造新供给,带动新需求, 打破原有的市场边界,想象空间巨大:

一方面大数据能够前所未有的精准洞悉现在,深入挖掘现有商业价值:

例如 Airbnb 拥有海量的独有数据,包括旅游地、用户评论、房源描述、社区信息等,Airbnb还有一支队伍去各地和当地人交流,搜集所有的相关历史数据。当用户在搜寻一个住宿的地方时, Airbnb 利用大数据分析通过Airbnb 社区告诉未来的客人哪里是更好的住宿地,甚至能够帮助用户更深入地了解某个地点,包括地理信息无法描述的文化或宗教上的区分。Uber 则是利用地理位臵和其用户的综合数据,大大缩短司机开着空车去接下一位乘客的时间和乘客等待的时间。

另一方面大数据能够空前准确的预测未来,从而能获得前瞻性的商业价值:

例如社交数据分析公司 Topsy 准确预测了 iPhone 4S上市后的市场表现,同时还成功预测美国大选结果和奥斯卡颁奖结果。它在商业分析、市场销售、新闻等领域拥有很高价值,因而苹果以 2亿多美元的价格收购 Topsy。

大数据

大数据

大数据产业链分析

大数据产业链可以分为四个部分: 数据采集和整合、数据存储和运算、数据分析和挖掘、数据应和消费。数据采集和整合是指通过技术手段从互联网、 移动终端、 物联网、 应用软件等采集数据,然后把数据按照一定的规则进行存储和运算,再按照需求调用数据并进行智能分析和挖掘,将数据转化成价值信息或者产品,为决策支持、提升效率、 创新产品提供依据。

大数据

数据资产开始成为核心资源

拥有数据,大数据时代的王者。在大数据时代, 数据资产已经成为核心资源, 2012年,奥巴马政府明确提出 将“大数据战略”上升为国家意志,并将数据定义为“未来的新石油”, 因此,拥有数据可谓是大数据时代的王者。 拥有数据的机构可以分为三类:

一是既有数据、 又有大数据思维的互联网公司,如阿里巴巴、腾讯、京东、 Google、Amazon等,在互联网端积累了大量的数据资源,而且此类公司 IT 起家, 对大数据有天生敏锐的嗅觉, 大数据技术也相对成熟, 因此,互联网公司 可谓是最早使用大数据的机构,成为大数据应用的先行者;

二是传统软件公司转型互联网,通过 SaaS 模式为用户提供服务, 例如用友软件推出畅捷通,以云模式为小微企业提供财务管理应用, 也可以认为是既有数据、 又有大数据思维的模式;

三是拥有数据,缺乏大数据思维的机构,这类机构手里掌握着大量的数据,但是没有能力自己有效利用, 例如金融机构、 运营商、政府部门等。

使用数据,数据变现的推动者。对于手里掌握大量数据,但没有能力变现的机构而言,需要专业的第三方公司提供大数据服务,主要是各类 IT咨询机构和行业应用软件厂商,尤其是行业应用软件厂商, 在各自的领域具有天然的卡位优势: 软件公司提供了行业应用软件和相关的运营维护, 行业应用软件本身就是重要的数据来源,软件公司 属于不拥有数据,但可以接触到数据的机构, 且天然拥有大数据思维和大数据技术,以及良好的行业客户关系,从信息系统建设延伸到大数据运营顺理成章。因此,各个细分行业的应用软件提供商有望成为传统拥有数据机构的重要合作伙伴, 助力其探索大数据价值变现。

大数据技术是重要生产力

大数据应用好坏的关键除了 数据本身,还在于大数据技术, 大数据技术包括数据采集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现等环节,涉及的技术环节极广, 随着数据体量增大和数据复杂性程度提高,大数据技术本身也处于快速迭代的发展过程中。值得一提的是,大数据技术落地的一大重要因素在于如何实现技术与业务的融合, 这背后需要深厚的业务理解, 对于既有数据、 又有大数据思维的互联网公司 来说,技术和业务本身是相互驱动、共同发展的, 对于拥有数据,缺乏大数据思维的机构而言, 在行业深耕多难的应用软件提供商则是最好的选择。

大数据


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
90 1
|
1月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
57 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
ly~
|
1月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
83 2
ly~
|
1月前
|
供应链 搜索推荐 大数据
大数据在零售业中的应用
在零售业中,大数据通过分析顾客的购买记录、在线浏览习惯等数据,帮助零售商理解顾客行为并提供个性化服务。例如,分析网站点击路径以了解顾客兴趣,并利用历史购买数据开发智能推荐系统,提升销售和顾客满意度。此外,大数据还能优化库存管理,通过分析销售数据和市场需求,更准确地预测需求,减少库存积压和缺货现象,提高资金流动性。
ly~
273 2
ly~
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
108 2
ly~
|
1月前
|
供应链 监控 搜索推荐
大数据的应用场景
大数据在众多行业中的应用场景广泛,涵盖金融、零售、医疗保健、交通物流、制造、能源、政府公共服务及教育等领域。在金融行业,大数据用于风险评估、精准营销、反欺诈以及决策支持;零售业则应用于商品推荐、供应链管理和门店运营优化等;医疗保健领域利用大数据进行疾病预测、辅助诊断和医疗质量评估;交通物流业通过大数据优化物流配送、交通管理和运输安全;制造业则在生产过程优化、设备维护和供应链协同方面受益;能源行业运用大数据提升智能电网管理和能源勘探效率;政府和公共服务部门借助大数据改善城市管理、政务服务及公共安全;教育行业通过大数据实现个性化学习和资源优化配置;体育娱乐业则利用大数据提升赛事分析和娱乐制作水平。
ly~
351 2
|
2月前
|
存储 数据可视化 大数据
大数据管理与应用
大数据管理与应用是一门融合数学、统计学和计算机科学的新兴专业,涵盖数据采集、存储、处理、分析及应用,旨在帮助企业高效决策和提升竞争力。核心课程包括数据库原理、数据挖掘、大数据分析技术等,覆盖数据处理全流程。毕业生可从事数据分析、大数据开发、数据管理等岗位,广泛应用于企业、金融及互联网领域。随着数字化转型加速,该专业需求旺盛,前景广阔。
130 5
|
2月前
|
存储 搜索推荐 大数据
大数据在医疗领域的应用
大数据在医疗领域有广泛应用,包括电子病历的数字化管理和共享,提升医疗服务效率与协同性;通过数据分析支持医疗决策,制定个性化治疗方案;预测疾病风险并提供预防措施;在精准医疗中深度分析患者基因组信息,实现高效治疗;在药物研发中,加速疗效和副作用发现,提高临床试验效率。此外,在金融领域,大数据的“4V”特性助力业务决策前瞻性,被广泛应用于银行、证券和保险的风险评估、市场分析及个性化服务中,提升运营效率和客户满意度。
97 6
|
2月前
|
存储 大数据 数据挖掘
【数据新纪元】Apache Doris:重塑实时分析性能,解锁大数据处理新速度,引爆数据价值潜能!
【9月更文挑战第5天】Apache Doris以其卓越的性能、灵活的架构和高效的数据处理能力,正在重塑实时分析的性能极限,解锁大数据处理的新速度,引爆数据价值的无限潜能。在未来的发展中,我们有理由相信Apache Doris将继续引领数据处理的潮流,为企业提供更快速、更准确、更智能的数据洞察和决策支持。让我们携手并进,共同探索数据新纪元的无限可能!
141 11
|
2月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能与大数据的融合应用##
随着科技的快速发展,人工智能(AI)和大数据技术已经深刻地改变了我们的生活。本文将探讨人工智能与大数据的基本概念、发展历程及其在多个领域的融合应用。同时,还将讨论这些技术所带来的优势与挑战,并展望未来的发展趋势。希望通过这篇文章,读者能够对人工智能与大数据有更深入的理解,并思考其对未来社会的影响。 ##