智慧穿戴装置带动医疗大数据发展

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

大数据

大数据应用的成熟,一方面是因为网路承载的数位资料数量以惊人的速度成长,加上非结构性资料的分析技术,也有相当程度的突破,而且物联网、智慧穿戴装置等技术及产品的出现,让实体世界的资料蒐集更为迅速且方便,不但加速大数据环境的形成,也让大数据分析的市场需求跟着浮现。

对医疗大数据而言,也是如此。随着光学技术、穿戴装置、机器人及物联网技术的引进,不管是病患使用的智慧穿戴装置、医生使用的医学仪器,都伴随着蒐集资料的功能,配合大数据分析技术,不仅能在病患察觉不到的情境下,就能让医生掌握病患的生理状况,还可能因此发现疾病,甚至在病发之前就能做好预防。

穿戴装置便利性有助医疗大数据的形成

如何让病患在察觉不到的前提下,蒐集各种生理资讯,一直是许多医疗仪器或检测方式致力的目标,一来可以减轻给病患带来的身体负担,同时也可提升病患配合提供生理资讯的意愿。

以测量血糖值为例,通常会要求病患到医疗场所抽血,但对於交通不便或行动不便的病患而言,可能就不见得适用,许多人也因此会选择在家中或附近的诊所,使用可携式血糖机,除了使用便利外,使用的舒适性,也成为病患选择血糖机的主因之一,也让血糖仪已经成为许多人不可或缺的居家医疗产品,尤其是能够达成无痛目标的非侵入式血糖量测技术渐渐成熟,包括红外线、超音波等,更加速病患使用可携式血糖机的意愿。

如日本原子能研究开发机构在四年一度的「日本医学会总会」上,发表一种手掌大小的无创血糖值感测器,用户只需将手指插入形状类似於电脑滑鼠的测量仪内,就能在3秒钟内测出血糖值,让血糖量测变得更加方便,配合无线网路、云端运算等技术的配合,病患可以更轻松地上传资料,连带也让医疗院所可以运用大数据分析技术,不但可以更即时准确的掌握病患的血糖值,大量的病患资料分析结果,更能用来进一步发展更完整的医疗资源规划。

事实上,不仅是专门用来作为医疗用途的设备,包括智慧手环、智慧手表等智慧穿戴装置最具前景的应用领域,医疗健康管理就是其中之一,许多智慧穿戴设备搭配智慧手机及云端运算架构,往往都号称可以利用大数据分析技术,帮助用户监测身体状况,保障身体健康,显示业者也知道,大数据分析技术,对智慧穿戴装置销售的帮助。

资料有价的观念需要建立

使用穿戴装置蒐集医疗数据,首先要进行资料采集,然後将这些数据加以分析与整合,此时就需要一个使用者够多的行动医疗应用平台,所整合出来的数据,才能产生够高的附加价值,如苹果Healthkit、Google Fit及百度的「百度医生」都在尝试吸引用户,最後才能将其转换成医疗服务,让医生可以透过这些穿戴装置所得到的数据进行诊断,或是提供医疗研究单位作为新产品或新技术的研发参考。

但即使有了蒐集医疗大数据的设备、平台,并不代表就没有问题。由於医疗产业的复杂度极高,且有一定程度的封闭性,不同的国家会有不同的法令规定,影响穿戴装置的设计及功能规范,资料蒐集的范围及可用性也大受影响,甚至在同一个国家,包括医院、医生、医药企业等参与者,也可能各行其是,无法形成足够规模的医疗大数据,也就无法进一步提升资料分析结果的综效。

要想真正落实医疗大数据的分析价值,就必须要设法整合各方关系和资源,尤其是政府政策的限制和监管,更是重要,因为医疗大数据最大的障碍,就是资讯安全,因为使用者的健康资讯往往相当敏感,从智慧穿戴设备采集资料後,到上传到医疗资料整合平台的过程中,平台能否保障使用者的资讯安全就显得格外重要。

美国食品药物管理局(FDA)在2015年1月发布了两份指导草案,详细规定了低风险的医疗健康产品平台的确定标准,并对第三方医疗配件的风险评估,提出基础性的建议,自然有助於医疗大数据市场的成长,类似美国作法的国家虽然还不多,但只要中国、印度等人口大国尽快推出类似美国的医疗可穿戴设备标准,将可促进相关产品及应用更快、更健康的发展,但各国之间的标准是否一致,也将会为市场投下不可预知的变数。

此外,医疗院所及相关研究单位,是否真的已经意识到「资料有价」的观念,也是攸关医疗大数据分析市场发展的关键,而对可穿戴医疗装置开发企业来说,如果不能靠大数据分析技术来获利,而只能靠销售软硬体产品的利润,不管是医疗可携式设备或平台的价格,势必会居高不下,不但影响产品及应用的普及性,更对医疗大数据的规模形成,有相当程度的影响,如何化解这些市场阻力,尽快的制订统一行业标准的规范,不仅要将重点放在软硬体产品上,更要提供相应的配套服务,只有类似大数据分析技术服务能够真正落实,才能增加用户使用的意愿,满足其医疗需求,才能建立智慧医疗的良性循环。


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
6月前
|
机器学习/深度学习 搜索推荐 大数据
大数据在医疗健康领域的革新作用
【6月更文挑战第1天】大数据在医疗健康领域展现出巨大潜力,助力疾病预测、精准诊断和个性化治疗。通过分析医疗数据,预测风险、辅助诊断,并定制治疗方案。示例代码展示了使用LogisticRegression进行疾病预测。随着技术发展,大数据将为医疗健康带来革命性进步,保障人类健康。
135 1
|
3月前
|
存储 搜索推荐 大数据
大数据在医疗领域的应用
大数据在医疗领域有广泛应用,包括电子病历的数字化管理和共享,提升医疗服务效率与协同性;通过数据分析支持医疗决策,制定个性化治疗方案;预测疾病风险并提供预防措施;在精准医疗中深度分析患者基因组信息,实现高效治疗;在药物研发中,加速疗效和副作用发现,提高临床试验效率。此外,在金融领域,大数据的“4V”特性助力业务决策前瞻性,被广泛应用于银行、证券和保险的风险评估、市场分析及个性化服务中,提升运营效率和客户满意度。
231 6
|
3月前
|
人工智能 编解码 搜索推荐
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
|
6月前
|
搜索推荐 安全 大数据
大数据在医疗领域的应用与前景
【6月更文挑战第26天】大数据在医疗领域提升服务效率,助力疾病预防与精准治疗。电子病历优化数据管理,疾病预测预防个性化医疗成为可能。未来,智能医疗系统普及,远程医疗兴起,数据共享促进行业发展,同时隐私保护与安全备受关注。大数据正重塑医疗,开启健康新篇章。
|
7月前
|
存储 关系型数据库 测试技术
印尼医疗龙头企业Halodoc的数据平台转型之Lakehouse架构
印尼医疗龙头企业Halodoc的数据平台转型之Lakehouse架构
88 4
|
7月前
|
大数据
大数据在医疗领域的应用有哪些?请举例说明。
大数据在医疗领域的应用有哪些?请举例说明。
140 0
|
大数据
《从数据治理看医疗大数据的发展》电子版地址
从数据治理看医疗大数据的发展
114 0
《从数据治理看医疗大数据的发展》电子版地址
|
SQL 存储 分布式计算
Apache Hudi在医疗大数据中的应用
本篇文章主要介绍Hudi在医疗大数据中的应用,主要分为5个部分进行介绍:1. 建设背景,2. 为什么选择Hudi,3. Hudi数据同步,4. 存储类型选择及查询优化,5. 未来发展与思考。
359 0
Apache Hudi在医疗大数据中的应用
|
数据采集 数据可视化 大数据
智慧医疗大数据解决方案
随着医院信息化建设不断发展,医疗数据规模日益增长,医疗服务全面进入“大数据时代”。
3079 0
智慧医疗大数据解决方案
|
机器学习/深度学习 存储 人工智能
后疫情时代的城市医疗大数据,需要怎样的建设“方法论”?
找准自身定位,医疗大数据产业的上下游企业将大有可为。城市级健康医疗大数据体系建设,是一个很宏大的命题。