从大数据谎言中区分实际需求

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

Gartner的Symposium/ITxpo会议上谈到,当大数据变得常见就会正常化,而作为IT专业人士在2020年大数据或变得正常化。

Gartner:从大数据谎言中区分实际需求

企业首席信息官们可以通过从大数据谎言中区分出实际需求的事实,来帮助他们的企业一步步走向正常。Gartner分析师Mark Beyer提出八个大数据“神话”:

1.100TB以上属于大数据

就大数据而言,是对数据的处理,而非数据的大小,企业不要再去寻觅大数据标准尺寸,因为大数据并没有标准尺寸。

2.大数据需更换基础设施

如果企业因为有新的需求就决定改变整个基础架构,分析师Mark Beyer表示企业是把之前所有的东西都当做赌注。对于CIO而言,IT基础设施成熟度牺牲的风险是否值得。

Gartner:从大数据谎言中区分实际需求
数据类型(图片来源csuiteinsider.com)

3.80%数据是非结构化

从数据上看,结构化和非结构化被经常引用大数据统计,但根据Beyer所谈最大的信息资产是机器数据,其并未相互关联说它们非结构化是绝对的谎言,而机器数据是结构化的数据,通常也是重复的信息。

4.工具将取代数据科学家

对于数据科学家,工具是一种工程,是对已经发现的事实的重复利用。而科学是去发现新的事实,所以工具不会取代数据科学家,至少在工具可以自行复制和发展之前不会。

5.海量数据解决质量问题

Gartner分析师Mark Beyer认为:“数据质量越低,答案质量就越低”。企业CIO们应该关注数据质量,通过手机收集的气质地理定位数据为例,有些人把手机等同于真实的个人,但对于数据质量来说有可以被不小心留在办公室,或者GPS功能可以在任何时间点被关闭。

Gartner:从大数据谎言中区分实际需求
图片来源update.com

6.实时只是速度更快而已

实时操作,并不意味着加快了当前数据的处理和分析过程,而是确保数据收集和决策之间的间隔越短越好。此外,大多数企业数据是不需要实时操作的。

7.数据量优于专业知识

对于大数据来说,那些认为可以简单地不再管业务流程的人,通常一位好的数据科学家并不能完全提供企业需求,如果没有业务流程管理,数据科学家将不能提供商业价值,需要企业有效的区分业务管理和大数据应用进而产生商业价值。

8.数据模型没有用

Gartner分析师Mark Beyer谈到,数据模型没有用这一论断很绝对。任何数字资产里的东西都有其数字模型,企业不应该因为大数据就舍弃模型。


本文作者:王迪

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
494 7
|
2月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
64 2
|
6天前
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试
|
2月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
107 1
|
2月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
107 4
|
2月前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
29 4
|
2月前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
69 3