数据人生的感悟:商业智能与商业分析区别

简介:

一、 商业智能的能够干什么?

Reasoning——对于企业的运营和管理,能够解决以下三方面的问题——确定问题的根源,明确问题的原因和影响,以及科学和合理得出相关的结论;

Planning ——基于相应的情况和推理,确定一系列的行动计划;

Prediction ——基于严格的推理,得到对于未来的各种可能性的预期;

Problem solving ——通过相应的问题特点,提供解决根本问题的方法和措施;

Abstraction ——通过具体的明细数据和场景,能够生成一般性的概念,模式,观点和结论等等;

Comprehend and understand ——能够感知,辨别和确认相应的问题——特别是,对于现状和问题条件的感知,以及从表面确定本质问题等;

Innovate —— 通过测试和学习能够获取相应新的发现;

Learn ——对于技能和知识的认知过程,其是一个无限循环的过程;

二、 相对于商业智能,商业分析又能够干什么?

Purposeful——当我们收集相关的信息,进行相关的分析活动时,商业分析是具有绝对的目的性的:例如,商业运营的财务,市场,销售等分析评估,以及员工绩效,风险等等商业管理方面的分析;

Insightful——在我们发现问题的根本原因,以及相应的结论时,商业分析能够提供有见地的说明;

Actionable——商业分析的目标是提供可执行的行动方案和规划;

三、 商业分析的基本原则

First Define the Problem and Then the Solution——首先明确问题,然后是提出解决方案;

Users have the information,Do Not Have Requirements——商业分析需要通过原始的信息中归纳出相应的商业需求;

Improve the Process First, Then Add Technology——首先“先下”流程解决,然后“线上”流程规范;

The Business Analyst Owns the Solution Requirements——商业分析师是商业需求,以及商业分析报告的第一责任人(而非股东,以及商业问题的利益攸关方);

Communicate, Cooperate, Collaborate——交流,沟通,协作;


本文作者:佚名

来源:51CTO

相关文章
|
2月前
|
SQL 缓存 分布式计算
阿里云连续五年入选Gartner®分析和商业智能平台魔力象限,中国唯一
Gartner® 正式发布《分析与商业智能平台魔力象限》报告(Magic Quadrant™ for Analytics and Business Intelligence Platforms),阿里云成为唯一入围该报告的中国厂商,被评为“挑战者”(Challengers)。这也是阿里云连续五年入选该报告。
|
20天前
|
供应链 监控 安全
基于Quick BI的多部门组织下的数据共享及管理方案
本文介绍了企业在使用Quick BI时面临的数据共享与安全控制需求,涵盖技术、财务、销售等部门的具体挑战,并提出了基于角色组授权、工作空间隔离、行级权限管理等解决方案,确保数据既能高效共享又能安全可控。
144 5
基于Quick BI的多部门组织下的数据共享及管理方案
|
1月前
|
人工智能 算法 BI
聚焦AI与BI融合,引领数智化新潮流 | 【瓴羊数据荟】瓴羊数据Meet Up城市行第一站完美收官!
当BI遇见AI,洞见变得触手可及 —— 瓴羊「数据荟」数据Meet Up城市行·杭州站启幕,欢迎参与。
424 5
聚焦AI与BI融合,引领数智化新潮流 | 【瓴羊数据荟】瓴羊数据Meet Up城市行第一站完美收官!
|
1月前
|
机器学习/深度学习 算法 数据挖掘
如何利用 BI 工具分析客户流失原因?
如何利用 BI 工具分析客户流失原因?
55 10
|
1月前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
7月前
|
分布式计算 大数据 BI
MaxCompute产品使用合集之MaxCompute项目的数据是否可以被接入到阿里云的Quick BI中
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
5月前
|
缓存 DataWorks 数据可视化
DataWorks 数据服务 + BI 可视化分析报表 (搭建战报)
DataWorks 数据服务提供强大的数据 API 能力,并能与多种业界流行的 BI 报表 (DataV、QuickBI、PowerBI和Grafana) 结合,使用 API 数据源的好处是统一数据接口、统一权限管理、统一数据交换以及数据服务提供强大的各式各样的插件能力 (如缓存插件、流量控制插件、日志脱敏插件、断路器插件、IP访问控制插件、三方鉴权插件等),下文介绍各热门 BI 工具接入 DataWorks 数据服务的操作方式。
201 0
DataWorks 数据服务 + BI 可视化分析报表 (搭建战报)
|
5月前
|
BI API 容器
数据架构问题之BI的早期概念是什么
数据架构问题之BI的早期概念是什么
|
6月前
|
SQL Java 关系型数据库
技术心得记录:开源BI分析工具Metabase配置与完全使用手册
技术心得记录:开源BI分析工具Metabase配置与完全使用手册
893 0
|
7月前
|
数据可视化 关系型数据库 MySQL
互联网电商与游戏行业实时BI分析
本文以电商行业为例,将业务数据和日志数据同步到 ADB,之后通过 Quick BI 做实时可视化分析。相对于传统的关系型数据库,阿里云分析型数据库 MySQL 版只需要几毫秒的时间,即可查询 PB 级数据并从中找到匹配信息。
互联网电商与游戏行业实时BI分析

热门文章

最新文章