泰坦超级计算机测试深度学习新方法用于癌症研究

简介:

橡树岭国家实验室(ORNL)是Titan泰坦超级计算机的所在地,由副总裁Joe Biden负责的一个专门研究小组的Cancer Moonshot计划,正在探索如何将深度学习用于改善癌症研究。

 泰坦超级计算机测试深度学习新方法用于癌症研究

具体来说,ORNL的研究人员运用新的深度学习技术自动从覆盖全国的癌症登记项目的癌症病理报告提取信息。这些登记项目收集了美国癌症的诊断、治疗和发病率历史相关的统计学信息和临床信息,医生可以将其作为一种咨询工具用于广泛的癌症监控中。

该实验室采用一个由1976份病理报告组成的数据集,研究人员培训了一种深度学习算法用于多任务,也就是说它可以同时运行两种不同但是紧密相关的信息提取任务。在第一个任务中,该算法的目标是识别癌症的主要位置,第二个任务是要识别癌症是在身体的哪一侧。

结果显示,这种方法中神经网络不仅可以理解词的意思,而且可以理解词之间的上下文关系,该算法相比其他不分析相关信息的方法要好得多。

“直观地说,这是有道理的,因为实施更困难的目标正是了解相关任务背景的好处所在,”橡树岭国家实验室医疗数据科学研究所主任Georgia Tourassi表示。“人类可以所这种学习是因为我们了解不同词语之间的语境关系。这就是我们试图用深度学习来实现的。”

据Tourassi表示,自动数据工具的开发可以为医疗研究人员和政策制定者提供一个美国癌症人群的详细情况,这可能会揭示那些在癌症研究中被忽略的方面,加速制订有希望的治疗手段。

“今天我们正在根据对很小一部分癌症患者的治疗有效性制定决策,他们可能并不代表正在患者群体,”Tourassi表示。“我们的工作显示深度学习有潜力创造可以实现有效癌症治疗和诊断流程、让癌症群体更好地了解他们在现实生活中表现的资源。”

橡树岭国家实验室是美国能源部和国家癌症研究所的战略计算合作伙伴的一部分。橡树岭国家实验室的泰坦超级计算机是美国最快的计算机,每秒可以运行20亿亿次计算。


原文发布时间为:2016年11月9日

本文作者:毕波

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

相关文章
|
11月前
|
数据采集 监控 机器人
浅谈网页端IM技术及相关测试方法实践(包括WebSocket性能测试)
最开始转转的客服系统体系如IM、工单以及机器人等都是使用第三方的产品。但第三方产品对于转转的业务,以及客服的效率等都产生了诸多限制,所以我们决定自研替换第三方系统。下面主要分享一下网页端IM技术及相关测试方法,我们先从了解IM系统和WebSocket开始。
271 4
|
2月前
|
测试技术 开发者 Python
Python单元测试入门:3个核心断言方法,帮你快速定位代码bug
本文介绍Python单元测试基础,详解`unittest`框架中的三大核心断言方法:`assertEqual`验证值相等,`assertTrue`和`assertFalse`判断条件真假。通过实例演示其用法,帮助开发者自动化检测代码逻辑,提升测试效率与可靠性。
312 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
598 8
|
5月前
|
测试技术
软考软件评测师——可靠性测试测试方法
软件可靠性是指软件在规定条件和时间内完成预定功能的能力,受运行环境、软件规模、内部结构、开发方法及可靠性投入等因素影响。失效概率指软件运行中出现失效的可能性,可靠度为不发生失效的概率,平均无失效时间(MTTF)体现软件可靠程度。案例分析显示,嵌入式软件需满足高可靠性要求,如机载软件的可靠度需达99.99%以上,通过定量指标评估其是否达标。
|
5月前
|
消息中间件 缓存 监控
性能测试怎么做?方法、流程与核心要点解析
本文系统阐述了性能测试的核心方法论、实施流程、问题定位优化及报告编写规范。涵盖五大测试类型(负载验证、极限压力、基准比对、持续稳定性、弹性扩展)与七项关键指标,详解各阶段任务如需求分析、场景设计和环境搭建,并提供常见瓶颈识别与优化实战案例。最后规范测试报告内容框架与数据可视化建议,为企业级实践提出建立基线库、自动化回归和全链路压测体系等建议,助力高效开展性能测试工作。
|
9月前
|
编解码 缓存 Prometheus
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
本期内容为「ximagine」频道《显示器测试流程》的规范及标准,我们主要使用Calman、DisplayCAL、i1Profiler等软件及CA410、Spyder X、i1Pro 2等设备,是我们目前制作内容数据的重要来源,我们深知所做的仍是比较表面的活儿,和工程师、科研人员相比有着不小的差距,测试并不复杂,但是相当繁琐,收集整理测试无不花费大量时间精力,内容不完善或者有错误的地方,希望大佬指出我们好改进!
619 16
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
|
9月前
|
人工智能 自然语言处理 测试技术
AxBench:斯坦福大学推出评估语言模型控制方法的基准测试框架
AxBench 是由斯坦福大学推出,用于评估语言模型可解释性方法的基准测试框架,支持概念检测和模型转向任务,帮助研究者系统地比较不同控制技术的有效性。
242 5
AxBench:斯坦福大学推出评估语言模型控制方法的基准测试框架
|
11月前
|
算法 数据挖掘 测试技术
犬类癌症检测(CANDiD)研究:使用独立测试集对1000多只犬进行基于高通量测序的多癌种早期检测"液体活检"血液测试的临床验证
这项研究首次在大规模独立测试集上验证了基于NGS的液体活检在犬类多癌种检测中的应用。该方法具有很高的特异性,可以作为一种新的无创癌症筛查和辅助诊断工具。通过早期发现癌症,有望改善犬类癌症的诊断和管理模式。
214 12
|
12月前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
434 6

热门文章

最新文章