从道的角度来论述大数据对企业价值

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

本文更多是从比较高的层面,也许就是我们说的“道”的层面去思考大数据如何对于一个企业产生价值。有很多观点的值得借鉴,值得大家去深入思考的,本文更多是一个方向,一个比较“虚”的描述,如果你从事一段时间的大数据工作,或者数据分析相关工作,相信你对本文有一定体会。

但是,大数据价值的实现与真正“落地”,绝对不是一句简单的事情。一个企业如何让【大】数据产生价值,绝对不是一句口号。真的需企业方方面面去支持。前期在技术上就需要投入大量资源,例如:大数据相关开发人员,数据分析人员,各种机器。

数据基础的建设,仅仅只是最基础的工作,真正要让数据对企业产生商业价值,不让对数据的基础投入成为摆设,则需要是公司的“文化”支持,不然会变成光是贴在墙上的口号:

“让数据说话!依据数据行事!”

“所有决策都需要数据支持!”

数据要产生价值要企业“文化”来浇灌,数据需要渗透企业“灵魂”中,这会涉及到企业很多人工作方式,流程,习惯,思维的转化。这往往是很“痛苦”的。一起看看这篇文章吧!

一、大数据使企业真正有能力从以自我为中心改变为以客户为中心

企业是为客户而生,目的是为股东获得利润。只有服务好客户,才能获得利润。但过去,很多企业是没有能力做到以客户为中心的,原因就是相应客户的信息量不大,挖掘不够,系统也不支持,目前的保险业就是一个典型。大数据的使用能够使对企业的经营对象从客户的粗略归纳(就是所谓提炼归纳的“客户群”)还原成一个个活生生的客户,这样经营就有针对性,对客户的服务就更好,投资效率就更高。

二、大数据一定程度上将颠覆了企业的传统管理方式

现代企业的管理方式是来源于对军队的模仿,依赖于层层级级的组织和严格的流程,依赖信息的层层汇集、收敛来制定正确的决策,再通过决策在组织的传递与分解,以及流程的规范,确保决策得到贯彻,确保每一次经营活动都有质量保证,也确保一定程度上对风险的规避。过去这是一种有用而笨拙的方式。在大数据时代,我们可能重构企业的管理方式,通过大数据的分析与挖掘,大量的业务本身就可以自决策,不必要依靠膨大的组织和复杂的流程。大家都是基于大数据来决策,都是依赖于既定的规则来决策,是高高在上的CEO决策,还是一线人员决策,本身并无大的区别,那么企业是否还需要如此多层级的组织和复杂的流程呢?

三、大数据另外一个重大的作用是改变了商业逻辑,提供了从其他视角直达答案的可能性

现在人的思考或者是企业的决策,事实上都是一种逻辑的力量在主导起作用。我们去调研,去收集数据,去进行归纳总结,最后形成自己的推断和决策意见,这是一个观察、思考、推理、决策的商业逻辑过程。人和组织的逻辑形成是需要大量的学习、培训与实践,代价是非常巨大的。但是否这是唯一的道路呢?大数据给了我们其他的选择,就是利用数据的力量,直接获得答案。就好像我们学习数学,小时候学九九乘法表,中学学几何,大学还学微积分,碰到一道难题,我们是利用了多年学习沉淀的经验来努力求解,但我们还有一种方法,在网上直接搜索是不是有这样的题目,如果有,直接抄答案就好了。很多人就会批评说,这是***,是作弊。但我们为什么要学习啊?不就是为了解决问题嘛。如果我任何时候都可以搜索到答案,都可以用最省力的方法找到最佳答案,这样的搜索难道不可以是一条光明大道吗?换句话说,为了得到“是什么”,我们不一定要理解“为什么”。我们不是否定逻辑的力量,但是至少我们有一种新的巨大力量可以依赖,这就是未来大数据的力量。

四、通过大数据,我们可能有全新的视角来发现新的商业机会和重构新的商业模式

我们现在看这个世界,比如分析家中食品腐败,主要就是依赖于我们的眼睛再加上我们的经验,但如果我们有一台显微镜,我们一下就看到坏细菌,那么分析起来完全就不一样了。大数据就是我们的显微镜,它可以让我们从全新视角来发现新的商业机会,并可能重构商业模型。我们的产品设计可能不一样了,很多事情不用猜了,客户的习惯和偏好一目了然,我们的设计就能轻易命中客户的心窝;我们的营销也完全不同了,我们知道客户喜欢什么、讨厌什么,更有针对性。特别是显微镜再加上广角镜,我们就有更多全新的视野了。这个广角镜就是跨行业的数据流动,使我们过去看不到的东西都能看到了,比如前面所述的汽车案例,开车是开车,保险是保险,本来不相关,但当我们把开车的大数据传递到保险公司,那整个保险公司的商业模式就全变了,完全重构了。

五、数据发展对IT本身技术架构的革命性影响

最后一点,我想谈的是大数据发展对IT本身技术架构的革命性影响。大数据的根基是IT系统。我们现代企业的IT系统基本上是建立在IOE(IBM小型机、Oracle数据库、EMC存储)+Cisco模型基础上的,这样的模型是Scale-UP型的架构,在解决既定模型下一定数据量的业务流程是适配的,但如果是大数据时代,很快会面临成本、技术和商业模式的问题,大数据对IT的需求很快就会超越了现有厂商架构的技术顶点,超大数据增长将带来IT支出增长之间的线性关系,使企业难以承受。因此,目前在行业中提出的去IOE趋势,利用Scale-out架构+开源软件对Scale-up架构+私有软件的取代,本质是大数据业务模型所带来的,也就是说大数据将驱动IT产业新一轮的架构性变革。去IOE潮流中的所谓国家安全因素,完全是次要的。

所以,美国人说,大数据是资源,和大油田、大煤矿一样,可以源源不断挖出大财富。而且和一般资源不一样,它是可再生的,是越挖越多、越挖越值钱的,这是反自然规律的。对企业如此,对行业、对国家也是这样,对人同样如此。这样的东西谁不喜欢呢?因此,大数据这么热门,是完全有道理的。


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
15天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
49 2
|
27天前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
37 0
|
2月前
|
存储 大数据 数据挖掘
【数据新纪元】Apache Doris:重塑实时分析性能,解锁大数据处理新速度,引爆数据价值潜能!
【9月更文挑战第5天】Apache Doris以其卓越的性能、灵活的架构和高效的数据处理能力,正在重塑实时分析的性能极限,解锁大数据处理的新速度,引爆数据价值的无限潜能。在未来的发展中,我们有理由相信Apache Doris将继续引领数据处理的潮流,为企业提供更快速、更准确、更智能的数据洞察和决策支持。让我们携手并进,共同探索数据新纪元的无限可能!
143 11
|
4月前
|
存储 机器学习/深度学习 大数据
参与开源大数据Workshop·杭州站,共探企业湖仓演进实践
Apache Flink 诚邀您参加 7 月 27 日在杭州举办的阿里云开源大数据 Workshop,了解流式湖仓、湖仓一体架构的最近演进方向,共探企业云上湖仓实践案例。
177 12
参与开源大数据Workshop·杭州站,共探企业湖仓演进实践
|
3月前
|
机器学习/深度学习 人工智能 分布式计算
理解并利用大数据的力量:解锁数据背后的价值
【8月更文挑战第7天】大数据已成为推动社会进步和经济发展的重要力量。通过理解并利用大数据的力量,企业可以解锁数据背后的价值,优化业务流程、提升决策效率和创新能力。然而,大数据应用也面临着诸多挑战和风险,需要企业不断学习和实践以应对。相信在未来的发展中,大数据将为我们带来更多的惊喜和机遇。
|
4月前
|
存储 算法 数据可视化
云上大数据分析平台:解锁数据价值,驱动智能决策新篇章
实时性与流式处理:随着实时数据分析需求的增加,云上大数据分析平台将更加注重实时性和流式处理能力的建设。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。
677 8
|
4月前
|
存储 监控 数据挖掘
云上大数据分析平台:赋能企业决策,挖掘数据金矿
5.3 场景化 针对不同行业和领域的需求特点,云上大数据分析平台将推出更多场景化的解决方案。这些解决方案将结合行业特点和业务场景进行
131 7
|
4月前
|
存储 分布式计算 数据可视化
ERP系统中的大数据分析与处理:驱动企业智能决策
【7月更文挑战第29天】 ERP系统中的大数据分析与处理:驱动企业智能决策
414 0
|
6月前
|
存储 分布式计算 算法
大数据处理:挖掘价值之道
大数据处理:挖掘价值之道
|
5月前
|
机器学习/深度学习 数据采集 大数据
大数据技术下的企业智能决策支持系统
大数据技术下的企业智能决策支持系统
183 0