再谈大数据的特征:感受数据之大

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

大数据

2001年,高德纳分析员道格·莱尼在一份与其2001年的研究相关的演讲中指出,数据增长有三个方向的挑战和机遇:量(Volume),即数据多少;速(Velocity),即资料输入、输出的速度;类(Variety),即多样性。

在莱尼的理论基础上,IBM提出大数据的4V特征?得到了业界的广泛认可。第一,数量(Volume),即数据巨大,从TB级别跃升到PB级别;第二,多样性(Variety),即数据类型繁多,不仅包括传统的格式化数据,还包括来自互联网的网络日志、视频、图片、地理位置信息等;第三,速度(Velocity),即处理速度快;第四,真实性(Veracity),即追求高质量的数据。虽然不同学者、不同研究机构对大数据的定义不尽相同,但都广泛提及了这4个基本特征。

大容量

天文学和基因学是最早产生大数据变革的领域。2000年,斯隆数字巡天项目启动时,位于新墨西哥州的望远镜在短短几周内搜集到的数据已经比天文学历史上总共搜集的数据还要多;在智利的大型视场全景巡天望远镜一旦于2016年投入使用,其在5天之内搜集到的信息量将相当于前者10年的信息档案。2003年,人类第一次破译人体基因密码时,用了10年才完成了30亿对碱基对的排序;而在10年之后,世界范围内的基因仪15分钟就可以完成同样的工作量。

伴随着各种随身设备、物联网和云计算、云存储等技术的发展,人和物的所有轨迹都可以被记录,数据因此被大量生产出来。移动互联网的核心网络节点是人,不再是网页。人人都成为数据制造者,短信、微博、照片、录像都是其数据产品;数据来自无数自动化传感器、自动记录设施、生产监测、环境监测、交通监测、安防监测等;来自自动流程记录,刷卡机、收款机、电子不停车收费系统,互联网点击、电话拨号等设施以及各种办事流程登记等。大量自动或人工产生的数据通过互联网聚集到特定地点,包括电信运营商、互联网运营商、政府、银行、商场、企业、交通枢纽等机构,形成了大数据之海。

我们周围到底有多少数据?数据量的增长速度有多快?许多人试图测量出一个确切的数字。

2011年,马丁·希尔伯特和普里西利亚·洛佩兹在《科学》上发表了一篇文章,对1986 ~2007年人类所创造、存储和传播的一切信息数量进行了追踪计算。其研究范围大约涵盖了60种模拟和数字技术:书籍、图画、信件、电子邮件、照片、音乐、视频(模拟和数字)、电子游戏、电话、汽车导航等。

据他们估算:2007年,人类大约存储了超过300EB的数据;1986~2007年,全球数据存储能力每年提高23%,双向通信能力每年提高28%,通用计算能力每年提高58%;预计到2013年,世界上存储的数据能达到约1.2ZB。

这样大的数据量意味着什么?据估算,如果把这些数据全部记在书中,这些书可以覆盖整个美国52次。如果存储在只读光盘上,这些光盘可以堆成5堆,每堆都可以伸到月球。在公元前3世纪,希腊时代最著名的图书馆亚历山大图书馆竭力搜集了当时其所能搜集到的书写作品,可以代表当时世界上其所能搜集到的知识量。但当数字数据洪流席卷世界之后,每个人都可以获得大量数据信息,相当于当时亚历山大图书馆存储的数据总量的320倍之多。


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
265 92
|
4月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
1058 7
|
20天前
|
SQL 分布式计算 数据挖掘
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
|
4月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
144 2
|
4天前
|
传感器 机器学习/深度学习 人工智能
数据让农业更聪明——用大数据激活田间地头
数据让农业更聪明——用大数据激活田间地头
19 2
|
25天前
|
人工智能 算法 大数据
数据的“潘多拉魔盒”:大数据伦理的深度思考
数据的“潘多拉魔盒”:大数据伦理的深度思考
64 25
|
4月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
197 1
|
1月前
|
存储 SQL 数据挖掘
数据无界、湖仓无界, Apache Doris 湖仓一体解决方案全面解读(上篇)
湖仓一体架构融合了数据湖的低成本、高扩展性,以及数据仓库的高性能、强数据治理能力,高效应对大数据时代的挑战。为助力企业实现湖仓一体的建设,Apache Doris 提出了数据无界和湖仓无界核心理念,并结合自身特性,助力企业加速从 0 到 1 构建湖仓体系,降低转型过程中的风险和成本。本文将对湖仓一体演进及 Apache Doris 湖仓一体方案进行介绍。
数据无界、湖仓无界, Apache Doris 湖仓一体解决方案全面解读(上篇)
|
2月前
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试
|
1月前
|
存储 分布式计算 大数据
大数据与云计算:无缝结合,开启数据新纪元
大数据与云计算:无缝结合,开启数据新纪元
166 11