5种大数据分析方法帮助银行重拾客户信心

简介:

我们正处在经济下滑的环境中,这是显而易见的。

银行的问题总是循环往复地出现。打开任何一家新闻网站或者报纸,我们都能看到一篇又一篇关于银行问题的报道。欺诈、英国退欧引发的不良影响、各式各样的金融危机和违规行为、事实描写中掺杂着谣言与暗讽……好像银行总是在向公众粉饰自己真正在做的事情。
 
这也就不难解释虽然这个行业的发展十分强劲迅猛,也是过去几百年间社会不可或缺的一部分,但人民群众却依然对银行业界充满了怀疑。银行的客户们更在意的是安全性违规、服务范围没有增加还有他们糟糕的服务质量;但有些银行人士却仰头看天,对这种担忧表示了蔑视。
 
赢回顾客的心
 
为了赢回客户的信心,在数字化变革中维持自己的地位,各个银行(以及整个银行业)都必须认真考虑自己传统的业务模式和运营方法。一些银行已经开启了自己的数字化转型旅程,采用了新兴技术并利用现有的数据源来开发出更好的产品和服务。大数据和分析技术是其中的关键,但这两者的潜力都没有被发挥到极致。银行必须采取一些切实手段,改变客户认知的障碍,获取数据驱动的业务机会。
 
支付数据
 
首先从最被低估的一种数据集说起。支付数据能够反映出每个客户的大量信息,例如他们付了多少钱、购买了什么、收款方是谁、参与业务的银行是哪家、交易的时间、地点等等信息。事实上,一个人的购买交易记录比他/她在社交媒体上的表现更能说明这个人是谁。交易数据的获取方式非常简单,但却可以精确描绘出一个人的生活方式、发现哪些公司参与到了商品的供应链中、并绘制出根据时间和地点而变化的消费曲线。与此同时,虽然客户本身的数据并不像交易数据一样多变,但在银行系统中却可以将客户数据和其他资料进行结合,例如交易数据、信用卡历史数据等,以此加强分析、推出成功的“次优选择”。
 
了解金融技术
 
银行只需要采取一些金融技术的思维,尝试这些简单而实用的技巧,在短期内就会获得重大的改变。
 
利用推荐引擎相关的数据 – 可以采取针对少部分人进行试验的方法进行。根据喜好对消费者进行分组、根据消费者对产品进行分组、再根据模式的相似程度对交易数据进行分组。每个人都想着要建立起独一无二的“单一客户视图”,但你知道吗,一个连接起2-3个产品组合的“局部客户视图”对于刚开始起步的企业开始就已经足够用了。
 
更关注交易及行为数据 – 交易数据更能帮助银行了解客户流失前发生过哪些事情,它能揭示出银行产品组合间相互的网络关系,客户对客户、客户对商户、公司对公司、产品对产品……了解这些以后银行下一步能做什么呢?
 
欺诈与合规 – 就像之前我提到的,银行异常熟练于管理合规和避免欺诈,但这整个行业都需要开展更好的文本分析工作,利用网络行为发现高风险的行为模式。例如“谁点击了哪些网站后就出现了欺诈行为”等洞察有时非常具有启发意义。现在,一些公司已经可以将网志数据和支行数据进行匹配,发现客户在网上和实体银行内的行为差异。
 
服务体验 – 在实体经营的年代里最重要的是“位置、位置和位置”;而在现在这个数据化年代里最重要的却变成了“客户、客户和客户”。利用事件数据发现造成问题的流程,再为客户们解决这些问题流程。呼叫中心记录也是一个隐藏的数据洞察来源。要分析这些呼叫记录的语义、发现重复出现的问题并不复杂,银行可以从这些投诉记录中获取新产品开发的灵感,只要他们想这么做的话。
 
改善移动端体验 – 很多银行都有自己的移动端APP但这些应用的功能通常都集中局限于辅助交易、转账和账户管理上面。但如果可以把银行的APP像Mint等其他APP那样,为客户提供更酷的预算管理、清晰地展现财务状况甚至是提供更有帮助的建议呢?银行可以针对移动运营商进行分析,发现数据中隐藏的模式(例如地点、客户属性、IP地址、移动上网等数据),了解带来客户满意的“指迹”。
 
单纯凭借以上五条建议其实并不能扭转银行与客户之间充满问题的关系,但它们却可以成为银行与客户间关系缓和的第一步、也是试验性的一步。
 
在“关系”和“信心”的围墙被修复以后,加上银行的企业级数字化转型策略,他们就可以重新回到建立长期的且有意义的数据驱动的客户关系中,而不是将就着建立不断减弱的、只有在特定情况下才会发生的、一次性交互关系。
原文发布时间为:2017年2月28日
本文作者:36大数据  
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
目录
相关文章
|
1月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
2月前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
261 4
|
2月前
|
JSON 大数据 API
巧用苏宁易购 API,精准分析苏宁易购家电销售大数据
在数据驱动的电商时代,精准分析销售数据能助力企业优化库存、提升营销效果。本文详解如何利用苏宁易购API获取家电销售数据,结合Python进行数据清洗与统计分析,实现销量预测与洞察提取,帮助企业降本增效。
59 0
|
14天前
|
存储 SQL 分布式计算
终于!大数据分析不用再“又要快又要省钱”二选一了!Dataphin新功能太香了!
Dataphin推出查询加速新功能,支持用StarRocks等引擎直连MaxCompute或Hadoop查原始数据,无需同步、秒级响应。数据只存一份,省成本、提效率,权限统一管理,打破“又要快又要省”的不可能三角,助力企业实现分析自由。
122 49
|
19天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
28天前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
1月前
|
机器学习/深度学习 搜索推荐 算法
基于python大数据的口红商品分析与推荐系统
本研究基于Python大数据技术,构建口红商品分析与推荐系统,旨在解决口红市场产品同质化与消费者选择困难问题。通过分析颜色、质地、价格等多维度数据及用户行为,实现个性化推荐,提升购物体验与品牌营销效率,推动美妆行业数字化转型,具有重要现实意义与市场价值。
|
2月前
|
机器学习/深度学习 安全 Java
Java 大视界 -- Java 大数据在智能金融反洗钱监测与交易异常分析中的应用(224)
本文探讨 Java 大数据在智能金融反洗钱监测与交易异常分析中的应用,介绍其在数据处理、机器学习建模、实战案例及安全隐私等方面的技术方案与挑战,展现 Java 在金融风控中的强大能力。
|
3月前
|
存储 Java 大数据
Java 大视界 -- Java 大数据在智能家居能源消耗模式分析与节能策略制定中的应用(198)
简介:本文探讨Java大数据技术在智能家居能源消耗分析与节能策略中的应用。通过数据采集、存储与智能分析,构建能耗模型,挖掘用电模式,制定设备调度策略,实现节能目标。结合实际案例,展示Java大数据在智能家居节能中的关键作用。
|
3月前
|
人工智能 边缘计算 分布式计算
ODPS 在 AI 时代的引领潜力与突破方向分析
阿里云 ODPS 凭借超大规模数据处理、多模态架构与 Data+AI 融合优势,正引领 AI 时代数据革命。其弹性算力支撑大模型训练,多模态处理提升数据利用率,AI 工程化能力完善。但实时性、边缘计算与跨云协同仍存短板。未来将重点突破智能数据编织、异构计算调度、隐私增强平台与边缘云端协同,加速行业落地。结合绿色计算与开放生态,ODPS 有望成为 AI 驱动的数据基础设施核心。
89 0

热门文章

最新文章