数据分析六部曲

简介:

什么是数据分析?数据分析是用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析的目的?把隐藏在一大批看似杂乱无章的数据背后的信息集中和提炼出来,总结出研究对象的内在规律。

数据分析

数据分析的目的

把隐藏在一大批看似杂乱无章的数据背后的信息集中和提炼出来,总结出研究对象的内在规律。

数据分析的分类

数据分析
数据分析的三大作用:现状分析、原因分析、预测分析。

数据分析的六部曲

数据分析
数据分析流程

1.明确目的和思路

梳理分析思路,并搭建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。同时,确保分析框架的体系化和逻辑性。

2.数据收集

一般数据来源于四种方式:数据库、第三方数据统计工具、专业的调研机构的统计年鉴或报告(如艾瑞资讯)、市场调查。

对于数据的收集需要预先做埋点,在发布前一定要经过谨慎的校验和测试,因为一旦版本发布出去而数据采集出了问题,就获取不到所需要的数据,影响分析。

3.数据处理

数据处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法,将各种原始数据加工成为产品经理需要的直观的可看数据。

4.数据分析

数据分析是用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。

常用的数据分析工具,掌握Excel的数据透视表,就能解决大多数的问题。需要的话,可以再有针对性的学习SPSS、SAS等。

数据挖掘是一种高级的数据分析方法,侧重解决四类数据分析问题:分类、聚类、关联和预测,重点在寻找模式与规律。

5.数据展现

一般情况下,数据是通过表格和图形的方式来呈现的。常用的数据图表包括饼图、柱形图、条形图、折线图、气泡图、散点图、雷达图等。进一步加工整理变成我们需要的图形,如金字塔图、矩阵图、漏斗图、帕雷托图等。

一般能用图说明问题的就不用表格,能用表说明问题的就不用文字。

图表制作的五个步骤:

  1. 确定要表达主题
  2. 确定哪种图表最适合
  3. 选择数据制作图表
  4. 检查是否真实反映数据
  5. 检查是否表达观点

常用图表类型和作用:

数据分析
图片来自于网易云课堂《谁说菜鸟不会数据分析》

6.报告撰写

一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。

好的数据分析报告需要有明确的结论、建议或解决方案。

数据分析的四大误区

1.分析目的不明确,为了分析而分析;

2.缺乏行业、公司业务认知,分析结果偏离实际。数据必须和业务结合才有意义。摸清楚所在产业链的整个结构,对行业的上游和下游的经营情况有大致的了解,再根据业务当前的需要,制定发展计划,归类出需要整理的数据。同时,熟悉业务才能看到数据背后隐藏的信息;

3.为了方法而方法,为了工具而工具,只要能解决问题的方法和工具就是好的方法和工具;

4.数据本身是客观的,但被解读出来的数据是主观的。同样的数据由不同的人分析很可能得出完全相反的结论,所以一定不能提前带着观点去分析。


本文作者:好甜

来源:51CTO

相关文章
|
3月前
|
数据挖掘 BI
解密辛普森悖论:如何在数据分析中保持清醒头脑
解密辛普森悖论:如何在数据分析中保持清醒头脑
85 0
|
5月前
|
存储 分布式计算 大数据
大数据处理竟然这么简单?学会这几招,你也能在数据洪流中游刃有余,秒变数据大师!
【8月更文挑战第6天】面对海量数据,有效处理成为关键。本文介绍大规模数据处理的核心挑战及解决方案,涵盖分布式存储(如HDFS)和计算(如Spark)。通过示例代码展示HDFS文件读写及Spark数据处理流程。此外,还强调了数据质量、安全及合理资源配置的重要性,助您在数据海洋中洞察先机。
94 1
|
6月前
|
数据采集 数据挖掘 数据处理
数据清洗大作战!Python手把手教你,如何打赢这场数据质量的保卫战!
【7月更文挑战第20天】在数据驱动的世界,数据质量至关重要。Python的pandas库助力数据清洗,包括去除重复项(`drop_duplicates()`),填充缺失值(如用均值或中位数`fillna()`),以及统一日期格式(`pd.to_datetime()`)。通过这些方法,混乱的数据得以整理,为精准分析和决策铺平道路。
103 1
|
数据挖掘 机器人 程序员
什么是好的数据分析?化繁为简的力量
什么是好的数据分析?化繁为简的力量
|
数据采集 运维 数据可视化
招商银行数据分析平台的前生今世
招商银行数据分析平台的前生今世
671 0
|
存储 机器学习/深度学习 SQL
见微知著,带你认认数据分析的大门,站在门口感受一下预测的魅力
预就是预先、事先,测就是度量、推测。预测通常被理解为对某些事物进行事先推测的过程。其实预测这个概念并不是我们第一次接触到,而是它从古至今都和我们的生活息息相关.而且在计算机技术飞速发展的DT时代,它一直伴随着我们,充斥着生活的方方面面,我们每个人都想更准确地预见未来,来掌握甚至改变事态的发展轨迹.所以用一句简单的话来概括就是:预测是一门研究未来的学问。从古至今都有人不断在研究它,应用它,而且研究的方法和理论也在不断地发展和完善,从古代的占卜术到如今的大数据和人工智能,预测的形式,方法,理论,技术,意义和作用发生了极大的变化.而且在数据科学的加持下,它建立于数据分析的基础上,预测不再是神秘的,而
866 3
|
SQL 机器学习/深度学习 人工智能
门外汉掌握数据分析处理技术的路线图
数据分析的学习思路与技术分享
228 0
门外汉掌握数据分析处理技术的路线图
|
SQL 数据挖掘 大数据
数据分析转型大数据开发,说说我的求职心酸之路
数据分析转型大数据开发,说说我的求职心酸之路
|
数据可视化 数据挖掘 程序员
技术人最不该忽视可视化数据分析! | 9月2号栖夜读
今天的首篇文章,讲述了:在这个“人人都是数据分析师”的时代,阿里的同学几乎都在参与数据的采集、加工与消费。数据可视化作为连接“加工——消费”的重要一环,其质量至关重要。优秀的可视化能促成卓越洞见,糟糕的内容则让所有的努力失去意义。
3289 0

热门文章

最新文章