五大新指标填补数据中心追踪的空白

简介:

传统数据中心指标不遵循"不让任何人落后"的规则。IT指标的差距通常会导致一些投资性支出半被拒绝或半途而废。

五大新指标填补数据中心追踪的空白

大部分IT企业的CIO已经制定了以传统数据为中心的指标,因为从历史上看,它们服务得很好。然而,随着移动数据与大数据的增多,历史传统的指标在IT度量系统发展中,差距越来越大。

我在过去15年的研究发现,中小规模企业对数据库的使用差

这里介绍的5个新IT指标之所以好用,因为它们体现了IT对业务服务与成本效益的影响。听起来有点违反直觉,但其已经被证明为适用于分析重要数据中心性能,尤其在配合新举措的场景下。

一、每位管理员多个数据库实例

异成为决定IT总拥有成本的指标。这也是许多数据中心经理们指尖的IT标准:有多少Oracle数据库,有多少Hadoop数据管理系统。

近年来,IBM System z Competitive Technology副总John Shedletsky分析了数据中心支出,显示数据库成本在总成本费用中占比逐渐走高,数据库管理费用不断上升,占比达到数据库整体预算的50%以上。换言之,典型的大型企业每个应用程序需要花费20%的成本在数据库管理上。

关键的可控变量是数据库,很多情况下,不同厂商的数据库是无法互相切换的。但仍然时不时有需要从Oracle迁移到IBM的需求——现有的工作负载可能更需要相同供应商的数据库,不管是现在还是将来。然而大数据处理和其他举措为数据库选择提供了有效、可扩展的企业标准,并且可以提高每管理员管理实例的数量。

数据中心经理与CIO都惊讶于其未来的改进与行业标准会如何变化。随着成本限制,IT组织没有办法再继续高举“没有任何数据库会被抛弃”的旗号。每管理员数据库示例数量是一个能够削减关键成本的有效指标,需要引起重视。

二、开发或错误修复项目中期的重要变更数

DevOps的问世清楚表明,数据中心是软件开发的重要组成部分。DevOps以及灵活IT需要为这中新方法找到适合数据中心的指标。

许多敏捷专家建议,不要采取制约开发灵活性以及可能鼓励错误行为的IT指标。其中一个例子就是开发成本指标,这种指标是以设计规范不会改变为前提。

有效的指标可以用于测量线下与敏捷开发,协调线上bug修复,以及每个项目重大变更的次数。我使用这个指标进行调研,结果发现随着时间推移,有效的敏捷开发可以提高每个项目重要变更的数量。

其他影响,如项目规模或复杂性,或者“明显变更”偏差都可以测量,根据时间推移计算出平均值。相较于灵活IT流程,你会发现在项目中间出现的大幅修改数增加。

太多的“敏捷IT指标”认为变更是有负效果的,而现在需要将变更作为积极的影响。该指标不用于精细捕捉特定项目的问题,而是显示平均每年这些项目的过程是否正常。采用敏捷指标的IT企业会因此提高敏捷业务范围内的响应。

三、不涉及中断的性能下降

IT部门的重点通常在于防止针威胁公司的中断故障,而没注意到一些性能下降或性能逐步降低的情况。性能下降几乎与服务中断一样重要。性能下降指标会告诉你问题有多大,而你的工作就是解决这些问题。

性能下降意味着特别难以修复的中断将要出现。在IT范围内的性能下降通常涉及软件层到硬件层的多种类型,使得定位原因远比服务器被拔掉或网络混乱来的难。

涉及到用户满意度时,性能下降无异于中断。随着越来越多企业依赖软件与用户进行交互,用户不太可能忍受性能问题。

性能下降通常意味着成本制约已经开始伤到快速扩张的骨头,这对大数据项目成功的影响至关重要。外包或云主机可以延缓这种可能性,但数据中心外部的成本同样会增加。

四、数据处理过程每个阶段信息丢失的百分比

根据MIT斯隆管理学院与其他地方研究发现,公司合作伙伴并不认为IT能提供令人满意的所有需求信息。

数据中心信息系统日积月累不断增长,逐渐变得无法交付有效数据来满足企业分析或作出决策,比如分析用户的购买模式,或者其他形式大数据分析所需的数据。

答案最终指向一个指标,该指标需要能够帮助确定IT是否已经存在不足。原始数据需要经过一步一步的处理,才能转换为有用信息。数据的有用性取决于每缓解骤损失的有效数据量。

根据调查,数据输入阶段的主要问题是错误条目——大约会损失20%潜在有用信息。该阶段通常是由于IT无法过滤输入阶段时的错误。

数据聚合会连接新输入的信息和系统中已存在信息。不一致的数据无法与现有数据进行核对或修复,这样可能导致大约15%的潜在数据不可用。

第三步是数据组合,该阶段,输入功能作为整体环境的分功能存在,例如在线交易处理,能够处理一定的输入操作。数据仓库的重要功能就是数据汇总,但随着时间推移,只有很少的信息需要进出仓库。并不是所有信息都需要展示;只有大约20%左右的数据在数据中心或云服务中保持活跃,而这些数据可能对实际的业务分析并没有帮助。

数据传输中,最常见的抱怨是及时性。这是一门艺术,确定哪些事情决策者必须迅速看到,哪些信息只需要每周或每月提交。信息损失问题十分明显。该阶段不必要的信息占比大约在15%至25%。

最后一步是数据分析,并且在该阶段,决策者所关注的总数据展示工具还是存在缺陷。该阶段大约有15%的信息会丢失。

IT组织报告说,大约有三分之二可能有用的信息会在数据处理的环节中丢失。设计一个指标用来指导每个阶段的数据样本,可以避免发生数据损失,IT也可以更方便地修复问题。这种监控可以改变企业者对IT的看法,并对企业效益产生重大影响。

五、客户满意度

普适计算及其对所有用户以及用户与企业通过软件进行内部交流,意味着IT软件对客户以及用户满意度影响的占比越来越大。

即使实在今天,用户满意度调查与用户调查仍然不够灵活,不够细致——他们会错过发现用户无法接受或者特别关键的部分。然而,即使是钝器,也是有可能或获得与正在发生的事情相关的信息或提示。此外,这个指标能提醒IT和企业利益相关者——最重要的是感知最终用户,而不是短期内企业或IT的意见。


本文作者:佚名

来源:51CTO

相关文章
|
6月前
|
存储 运维 监控
带你从概念、指标、标准这3方面了解所谓的数据中心。
带你从概念、指标、标准这3方面了解所谓的数据中心。
147 0
|
大数据 数据中心
新基建下对于降低数据中心能耗指标PUE的方法分析
本文分析了大数据中心作为新基建七大领域中的一部分,其最重要能耗指标PUE的计算方法和全国及部分省市对PUE指标的限制规定。分析能够降低PUE的不同方法及采用这些方法的数据中心的PUE值
2675 0
|
存储 数据中心
衡量数据中心好坏标准的隐性指标
评价一个数据中心有很多的参数、指标,可以用这些指标来衡量一个数据中心的好坏。比如:服务器和网络规模、PUE、RTO,RPO等等。很多数据中心很喜欢拿自己拥有的服务器数量如何的多,来表示自己的强大,相当长的一段时间内,数据中心都喜欢单纯地去追求物理设备数量的增加,认为只要是在规模越大,数据中心能力就越强,数据中心就越好。
2078 0
|
6月前
|
机器学习/深度学习 存储 监控
利用机器学习技术优化数据中心能效
【7月更文挑战第36天】在数据中心管理和运营中,能源效率已成为关键性能指标之一。随着能源成本的不断上升以及环境保护意识的增强,开发智能化、自动化的解决方案以降低能耗和提高能源利用率变得尤为重要。本文探讨了如何应用机器学习技术对数据中心的能源消耗进行建模、预测和优化,提出了一个基于机器学习的框架来动态调整资源分配和工作负载管理,以达到节能的目的。通过实验验证,该框架能够有效减少数据中心的能耗,同时保持服务质量。
|
9月前
|
存储 大数据 数据处理
探索现代数据中心的冷却技术
【5月更文挑战第25天】 在信息技术迅猛发展的今天,数据中心作为其核心基础设施之一,承载了巨大的数据处理需求。随着服务器密度的增加和计算能力的提升,数据中心的能耗问题尤其是冷却系统的能效问题日益凸显。本文将深入探讨现代数据中心所采用的高效冷却技术,包括液冷解决方案、热管技术和环境自适应控制等,旨在为数据中心的绿色节能提供参考和启示。