因职业角色而异的十大数据科学技能

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

数据科学的实践需要三个一般领域的技能:商业洞察、计算机技术/编程和统计学/数学。与询问对象有关,具体的重要技能集合总是在变化。Dave Holts描述了得到数据科学家工作所需要的技能,Ferris Jumah通过检查带有“数据科学家”称号的LinkedIn个人资料识别10项技能,BurtchWorks提供了他们的在数据科学领域中获得成功至关 重要的技能列表,RJMetrics也使用LinkedIn数据找出了20个重要的数据科学技能。这些列表、重要技能反映了数据专业人员在他们社交媒体资 料上列出的频率,或者只是简单地代表了作者认为最好的技能集合。

数据科学技能和熟练程度

数据科学家

在正在进行的数据科学家研究中,我们要求数据专业人员指出他们在25项不同数据科学技能上的熟练程度。上表中列出了这25项技能,反映了通常与数据科学家相关的技能集合。事实上,这些技能是前述研究中所包含的。

我用“中等”熟练水平作为数据专业人员拥有该技能的标准。“中等”说明一个数据专业人员能够按照要求完成任务,并且通常不需要他人的帮助。

数据科学家

重要数据科学技能

我以拥有该技能的数据专业人员百分比对这25项技能排序。

该列表在上图显示。图中前十项技能(从左到右)是所有数据专业人员中最常见的。数据科学十大技能是:

  • 统计 – 沟通(87%)
  • 技术 – 处理结构化数据(75%)
  • 数学&建模 – 数学(71%)
  • 商业 – 项目管理(71%)
  • 统计 – 数据挖掘和可视化工具(71%)
  • 统计 – 科学/科学方法(65%)
  • 统计 – 数据管理(65%)
  • 商业 – 产品设计和开发(59%)
  • 统计 – 统计学和统计建模(59%)
  • 商业 – 商业开发(53%)

许多重要的数据科学技能属于统计领域:所有的五项统计相关技能出现在前10名中,包括沟通、数据挖掘和可视化工具、科学/科学方法、以及统计学和统计建模。另外,商业洞察力相关的三项技能出现在前10,包括项目管理、产品设计以及开发。没有编程技能出现在前10中。

因职业角色而异的十大数据科学技能

下面,我们按不同的职业角色看看他们的十大技能。这种描述也出现在上一部分的图2中(后面的表呈现了细节)。对于每个职业角色,我指出了该角色的数 据专业人士拥有每项技能的频率。可以看到在图2中,一些重要数据科学技能在不同角色中是通用的。这包括沟通、管理结构化数据、数学、项目管理、数据挖掘和 可视化工具、数据管理、以及产品设计和开发。然而,除了这些相似之处还有相当大的差异,让我们看看每个职业角色。

商业经理:那些认为自己是商业经理(尤其是领导者、商务人士和企业家)的数据专业人士中的十大数据科学技能:

  • 统计 – 沟通(91%)
  • 商业 – 项目管理(86%)
  • 商业 – 商业开发(77%)
  • 技术 – 处理结构化数据(74%)
  • 商业 – 预算(71%)
  • 商业 – 产品设计和开发(70%)
  • 数学&建模 – 数学(65%)
  • 统计 – 数据管理(64%)
  • 统计- -数据挖掘和可视化工具(64%)
  • 商业 – 管理和兼容性(61%)

只与商业经理相关的重要技能毫无疑问的是商业领域的。这些技能包括商业开发、预算、以及管理和兼容性。

开发工作者:那些认为自己是开发工作者(尤其是开发者和工程师)的数据专业人士中的十大数据科学技能:

  • 技术 – 管理结构化数据(91%)
  • 统计 – 沟通(85%)
  • 统计 – 数据挖掘和可视化工具(76%)
  • 商业 – 产品设计(75%)
  • 数学&建模 – 数学(75%)
  • 统计 – 数据管理(75%)
  • 商业 – 项目管理(74%)
  • 编程 – 数据库管理(73%)
  • 编程 – 后端编程(70%)
  • 编程 – 系统管理(65%)

只与开发者相关的技能是技术和编程的那些。这些重要的技能包括后端编程、系统管理以及数据库管理。虽然这些数据数据专业人员具备这些技能,但是他们 中只有少数人拥有那些在大数据世界中很重要的,更加技术化、更加依赖编程的技能。例如,少于一半人掌握云管理(42%),大数据和分布式数据(48%)和 NLP以及文本挖掘(42%)。这些结果都与RJ Metrics的数据科学研究一致。我怀疑这些百分比会随着更多数据科学项目的毕业生开始就业而上升。

创意工作者:那些认为自己是创意工作者(尤其是万事通、艺术家和黑客)的数据专业人士中的十大数据科学技能:

  • 统计 – 沟通(87%)
  • 技术 – 处理结构化数据(79%)
  • 商业 – 项目管理(77%)
  • 统计 – 数据挖掘和可视化工具(77%)
  • 数学&建模 – 数学(75%)
  • 商业 – 产品设计和开发(68%)
  • 统计 – 科学/科学方法(68%)
  • 统计 – 数据管理(67%)
  • 统计 – 统计学和统计建模(63%)
  • 商业 – 商业开发(58%)

创意工作者并没有只对他们重要的技能。事实上,他们的重要数据科学技能列表与那些研究者紧密匹配,十项中有八项一致。

研究工作者:那些认为自己是研究工作者(尤其是研究员、科学家和统计学家)的数据专业人士中的十大数据科学技能:

  • 统计 – 沟通(90%)
  • 统计 – 数据挖掘和可视化工具(81%)
  • 数学&建模 – 数学(80%)
  • 统计 – 科学/科学方法(78%)
  • 统计 – 统计学和统计建模(75%)
  • 技术 – 处理结构化数据(73%)
  • 统计 – 数据管理(69%)
  • 商业 – 项目管理(68%)
  • 技术 – 机器学习(58%)
  • 数学 – 最优化(56%)

研究工作者的重要数据科学技能主要在统计领域。另外,只在研究工作者上体现的重要数据科学技能是高度定量性质,包括机器学习和最优化。

总结和结论

数据科学家

按职业角色的重要数据科学技能

重要数据科学技能列表取决于你正在考虑成为的数据科学家类型。虽然一些技能看起来在不同专业人士间通用(尤其是沟通,处理结构化数据,数学,项目管 理,数据挖掘和可视化工具,数据管理,以及产品设计和开发),但是其他数据科学技能对特定领域也有独特之处。开发工作者的重要技能包含编程技能;研究工作 者则包含数学相关的技能,当然商业经理的重要技能包含商业相关的节能。

这些结果对数据专业人员感兴趣的领域和他们的招聘者及组织都有影响。数据专业人员可以使用结果来了解不同类型工作需要具备的技能种类。如果你有较强的统计能力,你可能会寻找一个有较强研究成分的工作。了解你的技能并找那些对应的工作。

招聘人员需要了解不同类型的数据科学角色,以更好的招募与空缺职位的角色需求最匹配的专业人员。避免关注应聘者的职位,而是确定他们的技能符合要求。组织可以确保数据科学团队包含不同类型的数据科学家,让每个人解决最合适的问题,以此来优化他们的数据科学团队。


本文作者:数艺智训翻译

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
8月前
|
自然语言处理 测试技术
技术写作者所需的关键技能和知识
成为一名优秀的技术写作者需要以下核心技能:
111 0
|
8月前
|
人工智能
AIGC人工智能涉及三十六职业,看看有没有你的职业(二)
AIGC人工智能涉及三十六职业,看看有没有你的职业(二)
60 1
|
8月前
|
人工智能
AIGC人工智能涉及三十六职业,看看有没有你的职业(一)
AIGC人工智能涉及三十六职业,看看有没有你的职业(一)
182 0
|
Oracle JavaScript 关系型数据库
2022数字技能职业教育生态研讨会
职业教育是国民教育体系和人力资源开发的重要组成部分。发展职业教育,已经成为世界各国应对经济、社会、人口、环境、就业等方面挑战,实现可持续发展的重要战略选择。
2022数字技能职业教育生态研讨会
|
机器学习/深度学习 存储 人工智能
现代数据科学家的“忍者”技能
用外行人的话来说,火箭专家就是一个具有火箭科学知识的人。要成为一名数据科学家并不难。
|
SQL 分布式计算 大数据
这些数据科学家必备的技能,你拥有哪些?
想要成为数据科学家,没有这些技能怎么能行?
1937 0
|
机器学习/深度学习 算法 数据挖掘
细数数据科学团队中的十大关键角色
应用数据科学是一项高度跨学科的团队工作,需要用多样性的角度看问题。事实上,比起专业知识和经验,观点和态度的重要性也不容小觑。以下是我对数据科学团队构成的看法。
2687 0
|
算法
每个数据科学家都应该学习4个必备技能
作为一个数据科学家你必须要掌握的四个必备技能,值得每个想要成为数据科学家和已经成为数据科学家的人去学习。
6670 0

热门文章

最新文章

下一篇
开通oss服务