大数据在营销和销售中的十大应用

简介:

本文旨在给为大数据革命性改变市场营销和销售的众多趋势做一个概述, 其中综合了十个有关报告,介绍了十个大数据在如今的市场营销和销售策略中的应用。其中增长很快的一个领域就是定价:管理价格以及通过销售网络传播和优化定价。在有大数据算法和先进的分析技术的今天,为给定的产品或服务实现价格优化越来越不在话下。就连在不是那么有弹性的大宗商品驱动行业中,简化日常定价决策也已经是非常常见的了。

◆ ◆ ◆

大数据对市场营销和销售的巨大贡献

当前大数据可以辅助销售的方面包括:提高潜在客户的质量,提高销售机会数据的质量,提高目标客户开发精确性,区域规划,赢利率等等。而在市场营销中,大数据也功不可没。除了提供提高转换率策略,销售前景预测,增长收入和客户生命周期外,还有可以帮助我们判断销售周期内各阶段哪些内容是最有效的,以及如何改进客户关系管理系统。如果公司是提供基于云计算的企业软件服务,大数据还可以提供关于何降低客户获取成本(CAC),客户终身价值(CLTV)的信息,管理许多其他客户驱动的指标,这些指标对于经营云业务至关重要。

下面就是大数据变革命市场营销和销售的十大应用:

1. 大数据使得根据每个客户和每个产品的关系进行等级差别定价策略,最大限度的优化定价变得可能。

麦肯锡的分析发现,一家典型的公司75%的收入来源于其标准产品,在每年这成百上千种定价标准产品的决策中30%的时候公司无法定出最好的价格。假定销售量没有减少,1%的价格提高却可以带来高达经营利润8.7%的增加,定价具有显著的提高盈利能力的潜力空间。

报告来源 -- 麦肯锡公司:利用大数据更好的做定价决策

2.大数据可以带来更大的顾客回应率以及更深层次的客户信息。

根据下图的调查问卷,Forrester的研究发现44%的B2C的市场营销人员正在使用大数据提高客户的的回应率,36%的营销人员运用数据分析和数据挖掘,获取更多的深层客户信息从而策划更多的关系驱动的市场策略。

报告来源- Compendium 市场营销大步向前解决增强客户体验和营销效果的难题(PDF)

大数据联盟(DataMeer)最近的研究发现,客户分析统领大数据在销售和市场营销部门的应用。而支持这个趋势的有下面四个关键策略:增加潜在客户、减少客户流失、增加每个客户的投入以及改进现有产品。

报告来源 – 大数据 : 企业的竞争力武器

4.用大数据将分析数据嵌入到情境营销中。

许多公司的营销平台技术正在快速完善,支持这个趋势的基础是不断变化的客户、销售、服务和与现有系统不匹配的渠道需求。这造成了许多营销部门在数据和处理上无法完全集成好。大数据分析可以创建可扩展的系统分析,可以再一定程度上缓解这个问题。下图来自Forrester的研究,在SAS网站上可以免费下载,结合直觉与参与的情境营销工具和技术:企业营销技术手册。

报告来源- SAS: 结合直觉与参与的情境营销工具和技术:企业营销技术手册

5.大数据分析可以完善客户关系使得营销方案更成功。

通过大数据分析,定义和指导客户发展,营销人员创造更大客户忠诚度。下图来自于SAS赞助Forrester的研究,分析是如何在整个客户生命周中提供价值的(图中两条线间的距离表示者数据分析带来的价值)。

报告来源- SAS: 数据分析是如何助力整个客户客户生命周期管理

6.生物医药行业已经开始利用地域分析来优化销售策略及市场投放计划。

麦肯锡发现,生物医药企业基本都要花费20%到30%的利润用于销售和行政管理。如果这些企业可以在拥有更多销售潜力的地区和范围精确地部署销售及市场策略,将能够立即降低这项成本。

报告来源 –大数据在生物制药行业的效果

7. 58%的首席营销官(CMO)表示,在搜索引擎优化及营销、邮件市场营销和手机营销方面,大数据发挥着最大的影响力。

其中54%的CMO相信大数据及分析将会长久地在他们营销策略制定过程中扮演至关重要的角色。

报告来源- 大数据和首席营销官:什么在改变着市场营销领导能力

8. 在最近的调查中,福布斯对十余个行业的市场领跑者进行了深入的追踪,发现他们通过利用先进的大数据分析获得了更高的客户参与度和客户忠诚度。

这项研究发现,在这十余个行业中,特定部门分析及大数据的专业程度是决定策略成功与否的关键。与此同时,当试点计划取得积极结果时,整个企业范围内的文化也会发生大规模深层次的转变。来源:Forbes Insights, The Rise of The New Marketing Organization.

报告来源 – 新型营销组织的崛起

9. 大数据让企业对自己的每个商业增长点都有了更准确的理解。

增加收益,减少成本和减少运营成本,如今,大数据正在这三个关键领域里发挥它的效用,转化成实际的商业价值。当有效利用先进的大数据分析时, 一个企业的价值驱动点将会被更有效的计量。下图的演示图就说明这一点。

报告来源 - Deloitte的大数据报告

10. 基于大数据的客户价值分析已经让营销者能够在各个渠道为客户提供连续稳定全方位的用户体验。

客户价值分析(CVA) 最近正在成为新兴的热门话题,因为一系列基于大数据的技术在保持和衡量客户关系的过程中加速了销售周期。现如今,CVA成为了一系列用于在销售网络中精心维护优质全面的客户体验的科技。


本文作者:赵娟
来源:51CTO
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
5月前
|
存储 数据采集 搜索推荐
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
本篇文章探讨了 Java 大数据在智慧文旅景区中的创新应用,重点分析了如何通过数据采集、情感分析与可视化等技术,挖掘游客情感需求,进而优化景区服务。文章结合实际案例,展示了 Java 在数据处理与智能推荐等方面的强大能力,为文旅行业的智慧化升级提供了可行路径。
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
本文探讨Java大数据可视化在城市空气质量监测与污染溯源中的创新应用,结合多源数据采集、实时分析与GIS技术,助力环保决策,提升城市空气质量管理水平。
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
|
5月前
|
存储 监控 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业生产运营监控与决策支持中的应用(228)
本文探讨了基于 Java 的大数据可视化技术在企业生产运营监控与决策支持中的关键应用。面对数据爆炸、信息孤岛和实时性不足等挑战,Java 通过高效数据采集、清洗与可视化引擎,助力企业构建实时监控与智能决策系统,显著提升运营效率与竞争力。
|
5月前
|
Java 大数据 数据处理
Java 大视界 -- 基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战(222)
本文探讨了基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战。文章分析了传统制造模式的局限性,介绍了工业互联网带来的机遇,并结合实际案例展示了 Java 在多源数据采集、实时处理及设备协同优化中的关键技术应用。同时,也深入讨论了数据安全、技术架构等挑战及应对策略。
|
5月前
|
数据采集 搜索推荐 Java
Java 大视界 -- Java 大数据在智能教育虚拟学习环境构建与用户体验优化中的应用(221)
本文探讨 Java 大数据在智能教育虚拟学习环境中的应用,涵盖多源数据采集、个性化推荐、实时互动优化等核心技术,结合实际案例分析其在提升学习体验与教学质量中的成效,并展望未来发展方向与技术挑战。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
Java 大视界 -- Java 大数据机器学习模型在自然语言生成中的可控性研究与应用(229)
本文深入探讨Java大数据与机器学习在自然语言生成(NLG)中的可控性研究,分析当前生成模型面临的“失控”挑战,如数据噪声、标注偏差及黑盒模型信任问题,提出Java技术在数据清洗、异构框架融合与生态工具链中的关键作用。通过条件注入、强化学习与模型融合等策略,实现文本生成的精准控制,并结合网易新闻与蚂蚁集团的实战案例,展示Java在提升生成效率与合规性方面的卓越能力,为金融、法律等强监管领域提供技术参考。
|
5月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
5月前
|
机器学习/深度学习 安全 Java
Java 大视界 -- Java 大数据在智能金融反洗钱监测与交易异常分析中的应用(224)
本文探讨 Java 大数据在智能金融反洗钱监测与交易异常分析中的应用,介绍其在数据处理、机器学习建模、实战案例及安全隐私等方面的技术方案与挑战,展现 Java 在金融风控中的强大能力。
|
5月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。
|
5月前
|
机器学习/深度学习 搜索推荐 数据可视化
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。