如何用Redis缓存改善数据库查询性能?

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
简介:

调整一个关系型数据库以实现高性能查询是一个困难的工作。如果优化数据模型和调整查询方式都不起作用,那么管理员可以使用一个诸如Redis这样的缓存技术,这是一个提供内存内和持久数据存储的关键值数据存储方法。

Redis缓存 查询优化 数据模型调整

因为Redis具有在数据存储中快速读写数据的能力,所以它比关系型数据库更具有性能优势。但是,关键值数据存储是简单的;它们没有一个类似于SQL的查询语言或者结构化的数据模型。相反,它们有一个把键值作为与数值相关的标识符来使用的简单字典或哈希模式。管理员使用这些键来进行数值的存储和检索。

键值存储是简单快速的,它可用于实现丰富数据模型和关系型数据库查询功能的良好匹配。但是,有时候还是使用键值与关系型数据库的组合为好。此外,还有很多商业支持的键值数据库,包括Redis、Riak和Areospike等。

为了运行一个优化热门查询性能的Redis缓存,首先应确定你希望缓存的查询结果。其中,应重点关注最常用的和最耗时的查询,然后确定应缓冲查询中的数据。为简便起见,缓存查询返回的所有列值。

为键值定义一个命名约定;可以使用行主键和列名的组合来构造密钥。例如,其主键ID为 198278的 产品描述可以‘198278:descry’的键值进行存储。确保你的命名规则是简单和规则驱动的,以便于使用最少的代码来实现键的程序化创建。

接下来,确定是运行Redis缓存作为自助管理服务还是运行亚马逊的ElastiCache。运行用户自己的Redis实例将赋予管理人员对缓存的完全控制权。而这一控制权意味着灵活性,例如当有超出容量的情况出现时,管理人员有使用现有保留实例的权力。

此外,当用户想要把应用程序从一家云计算供应商迁移至另一家时,他们会发现完整的管理控制权限是非常有用的。

如果用户选择运行一个自助管理的Redis实例,可下载服务器。Redis的客户端支持30种以上编程语言——从Java和Python到Prolog和Smalltalk。

已经使用AWS环境的企业可能会想要使用ElastiCache。除了诸如托管打补丁这样的优点之外,亚马逊ElastiCache支持一系列高速缓存优化的节点类型,具体包括从中型到2X的m3节点、从大型到8X的r3节点以及从微型到中型的t2节点。ElastiCache还支持一些上一代的节点类型,例如选择m1、m2、t1和c1节点。

ElastiCache还支持多个可用区。如果有一个节点发生故障,一个读操作复制节点将取代故障节点。任何需要确保应用程序运行的DNS变更都是自动完成的,同时会创建一个新的读操作副本。ElastiCache允许基于单位时间使用率的按需定价模式,以及一年期或三年期预付费的节点使用条款。完整定价清单可以在这里找到。

如果使用Redis缓存和亚马逊ElastiCache,那么就可以从AWS管理控制台启动一个集群。除了设置Redis服务外,还需要修改应用程序代码以便于能够使用缓存。一个常用的模式就是,检查缓存中是否存在有一个键值,如果没有就执行一个SQL查询以检索数据,然后将其存储在缓存中。当缓冲存满时,可以配置Redis删除旧数据,这样就不需要用户使用专门的代码来处理缓存存满的情况了。


本文作者:佚名

来源:51CTO

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
3天前
|
缓存 NoSQL 中间件
Redis,分布式缓存演化之路
本文介绍了基于Redis的分布式缓存演化,探讨了分布式锁和缓存一致性问题及其解决方案。首先分析了本地缓存和分布式缓存的区别与优劣,接着深入讲解了分布式远程缓存带来的并发、缓存失效(穿透、雪崩、击穿)等问题及应对策略。文章还详细描述了如何使用Redis实现分布式锁,确保高并发场景下的数据一致性和系统稳定性。最后,通过双写模式和失效模式讨论了缓存一致性问题,并提出了多种解决方案,如引入Canal中间件等。希望这些内容能为读者在设计分布式缓存系统时提供有价值的参考。感谢您的阅读!
Redis,分布式缓存演化之路
|
2月前
|
存储 缓存 NoSQL
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
185 85
|
27天前
|
存储 缓存 NoSQL
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
|
27天前
|
缓存 NoSQL 关系型数据库
云端问道21期实操教学-应对高并发,利用云数据库 Tair(兼容 Redis®)缓存实现极速响应
本文介绍了如何通过云端问道21期实操教学,利用云数据库 Tair(兼容 Redis®)缓存实现高并发场景下的极速响应。主要内容分为四部分:方案概览、部署准备、一键部署和完成及清理。方案概览中,展示了如何使用 Redis 提升业务性能,降低响应时间;部署准备介绍了账号注册与充值步骤;一键部署详细讲解了创建 ECS、RDS 和 Redis 实例的过程;最后,通过对比测试验证了 Redis 缓存的有效性,并指导用户清理资源以避免额外费用。
|
22天前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
165 0
|
2月前
|
缓存 NoSQL Serverless
云数据库Tair:从稳定低延时缓存到 Serverless KV
本次分享聚焦云数据库Tair的使用,涵盖三部分内容:1) Tair概览,介绍其作为稳定低延时缓存及KV数据库服务的特点和优势;2) 稳定低延迟缓存技术,探讨如何通过多线程处理、优化内核等手段提升性能与稳定性;3) 从缓存到Serverless KV的演进,特别是在AI大模型时代,Tair如何助力在线服务和推理缓存加速。Tair在兼容性、性能优化、扩缩容及AI推理加速方面表现出色,满足不同场景需求。
|
2月前
|
缓存 监控 NoSQL
Redis经典问题:缓存穿透
本文详细探讨了分布式系统和缓存应用中的经典问题——缓存穿透。缓存穿透是指用户请求的数据在缓存和数据库中都不存在,导致大量请求直接落到数据库上,可能引发数据库崩溃或性能下降。文章介绍了几种有效的解决方案,包括接口层增加校验、缓存空值、使用布隆过滤器、优化数据库查询以及加强监控报警机制。通过这些方法,可以有效缓解缓存穿透对系统的影响,提升系统的稳定性和性能。
|
2月前
|
缓存 物联网 数据库
InfluxDB vs TDengine :2025 年了,谁家用的数据库还不能高效读缓存?
在工业互联网和物联网的大数据应用场景中,实时数据的写入和查询性能至关重要。如何快速获取最新设备状态并实时处理数据,直接影响到业务的高效运转。本文将深入分析 TDengine 和 InfluxDB 在缓存机制上的差异,帮助读者更好地理解这两款主流时序数据库在性能优化方面的优劣。
167 1
|
2月前
|
存储 NoSQL 网络协议
Redis性能攻略:Redis-benchmark工具与实用性能优化技巧
Redis 是一种高性能的内存数据库,广泛应用于各种业务场景。随着业务规模扩大和数据量增长,性能问题逐渐凸显。本文深入探讨 Redis 性能优化方案,包括硬件配置(网络、内存优化)、参数配置(maxmemory、timeout 等)、数据结构选择、过期策略、持久化机制(RDB、AOF)及集群方案(主从复制、哨兵模式、集群模式),帮助提升 Redis 的整体性能表现。
57 0
|
3月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
65 5