为什么不使用ZooKeeper构建云平台发现服务?

本文涉及的产品
MSE Nacos/ZooKeeper 企业版试用,1600元额度,限量50份
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
云原生网关 MSE Higress,422元/月
简介:

本文作者通过ZooKeeper与Eureka作为 Service发现服务(注:WebServices 体系中的UDDI就是个发现服务)的优劣对比,分享了Knewton在云计算平台部署服务的经验。本文虽然略显偏激,但是看得出Knewton在云平台方面是非常有经验的,这篇文章从实践角度出发分别从云平台特点、CAP原理以及运维三个方面对比了ZooKeeper与Eureka两个系统作为发布服务的优劣,并提出了在云平台构建发现服务的方法论。

背景

很多公司选择使用 ZooKeeper作为Service发现服务(Service Discovery),但是在构建 Knewton(Knewton 是一个提供个性化教育平台的公司、学校和出版商可以通过Knewton平台为学生提供自适应的学习材料)平台时,我们发现这是个根本性的错误。在这边文章 中,我们将用我们在实践中遇到的问题来说明,为什么使用ZooKeeper做Service发现服务是个错误。

请留意服务部署环境

让我们从头开始梳理。我们在部署服务的时候,应该首先考虑服务部署的平台(平台环境),然后才能考虑平台上跑的软件 系统或者如何在选定的平台上自己构建一套系统。例如,对于云部署平台来说,平台在硬件层面的伸缩(注:作者应该指的是系统的冗余性设计,即系统遇到单点失 效问题,能够快速切换到其他节点完成任务)与如何应对网络故障是首先要考虑的。当你的服务运行在大量服务器构建的集群之上时(注:原话为大量可替换设 备),则肯定会出现单点故障的问题。对于knewton来说,我们虽然是部署在AWS上的,但是在过往的运维中,我们也遇到过形形色色的故障;所以,你应 该把系统设计成“故障开放型”(expecting failure)的。其实有很多同样使用AWS的 公司跟我们遇到了(同时有很多 书是介绍这方面的)相似的问题。你必须能够提前预料到平台可能会出现的问题如:意外故障(注:原文为box failure,只能意会到作者指的是意外弹出的错误提示框),高延迟与 网络分割问题(注:原文为network partitions。意思是当网络交换机出故障会导致不同子网间通讯中断)——同时我们要能构建足够弹性的系统来应对它们的发生。

永远不要期望你部署服务的平台跟其他人是一样的!当然,如果你在独自运维一个数据中心,你可能会花很多时间与钱来避免硬件故障与网络分割问题,这 是另一种情况了;但是在云计算平台中,如AWS,会产生不同的问题以及不同的解决方式。当你实际使用时你就会明白,但是,你最好提前应对它们(注:指的是 上一节说的意外故障、高延迟与网络分割问题)的发生。

ZooKeeper作为发现服务的问题

ZooKeeper(注:ZooKeeper是著名Hadoop的一个子项目,旨在解决大规模分 布式应用场景下,服务协调同步(Coordinate Service)的问题;它可以为同在一个分布式系统中的其他服务提供:统一命名服务、配置管理、分布式锁服务、集群管理等功能)是个伟大的开源项目,它 很成熟,有相当大的社区来支持它的发展,而且在生产环境得到了广泛的使用;但是用它来做Service发现服务解决方案则是个错误。

在分布式系统领域有个著名的 CAP定理(C- 数据一致性;A-服务可用性;P-服务对网络分区故障的容错性,这三个特性在任何分布式系统中不能同时满足,最多同时满足两个);ZooKeeper是个 CP的,即任何时刻对ZooKeeper的访问请求能得到一致的数据结果,同时系统对网络分割具备容错性;但是它不能保证每次服务请求的可用性(注:也就 是在极端环境下,ZooKeeper可能会丢弃一些请求,消费者程序需要重新请求才能获得结果)。但是别忘了,ZooKeeper是分布式协调服务,它的 职责是保证数据(注:配置数据,状态数据)在其管辖下的所有服务之间保持同步、一致;所以就不难理解为什么ZooKeeper被设计成CP而不是AP特性 的了,如果是AP的,那么将会带来恐怖的后果(注:ZooKeeper就像交叉路口的信号灯一样,你能想象在交通要道突然信号灯失灵的情况吗?)。而且, 作为ZooKeeper的核心实现算法 Zab,就是解决了分布式系统下数据如何在多个服务之间保持同步问题的。

作为一个分布式协同服务,ZooKeeper非常好,但是对于Service发现服务来说就不合适了;因为对于Service发现服务来说就算是 返回了包含不实的信息的结果也比什么都不返回要好;再者,对于Service发现服务而言,宁可返回某服务5分钟之前在哪几个服务器上可用的信息,也不能 因为暂时的网络故障而找不到可用的服务器,而不返回任何结果。所以说,用ZooKeeper来做Service发现服务是肯定错误的,如果你这么用就惨 了!

而且更何况,如果被用作Service发现服务,ZooKeeper本身并没有正确的处理网络分割的问题;而在云端,网络分割问题跟其他类型的故障一样的确会发生;所以最好提前对这个问题做好100%的准备。就像 Jepsen在 ZooKeeper网站上发布的博客中所说:在ZooKeeper中,如果在同一个网络分区(partition)的节点数(nodes)数达不到 ZooKeeper选取Leader节点的“法定人数”时,它们就会从ZooKeeper中断开,当然同时也就不能提供Service发现服务了。

如果给ZooKeeper加上客户端缓存(注:给ZooKeeper节点配上本地缓存)或者其他类似技术的话可以缓解ZooKeeper因为网络故障造成节点同步信息错误的问题。 Pinterest与 Airbnb公 司就使用了这个方法来防止ZooKeeper故障发生。这种方式可以从表面上解决这个问题,具体地说,当部分或者所有节点跟ZooKeeper断开的情况 下,每个节点还可以从本地缓存中获取到数据;但是,即便如此,ZooKeeper下所有节点不可能保证任何时候都能缓存所有的服务注册信息。如果 ZooKeeper下所有节点都断开了,或者集群中出现了网络分割的故障(注:由于交换机故障导致交换机底下的子网间不能互访);那么ZooKeeper 会将它们都从自己管理范围中剔除出去,外界就不能访问到这些节点了,即便这些节点本身是“健康”的,可以正常提供服务的;所以导致到达这些节点的服务请求 被丢失了。(注:这也是为什么ZooKeeper不满足CAP中A的原因)

更深层次的原因是,ZooKeeper是按照CP原则构建的,也就是说它能保证每个节点的数据保持一致,而为ZooKeeper加上缓存的做法的 目的是为了让ZooKeeper变得更加可靠(available);但是,ZooKeeper设计的本意是保持节点的数据一致,也就是CP。所以,这样 一来,你可能既得不到一个数据一致的(CP)也得不到一个高可用的(AP)的Service发现服务了;因为,这相当于你在一个已有的CP系统上强制栓了 一个AP的系统,这在本质上就行不通的!一个Service发现服务应该从一开始就被设计成高可用的才行!

如果抛开CAP原理不管,正确的设置与维护ZooKeeper服务就非常的困难;错误会 经常发生, 导致很多工程被建立只是为了减轻维护ZooKeeper的难度。这些错误不仅存在与客户端而且还存在于ZooKeeper服务器本身。Knewton平台 很多故障就是由于ZooKeeper使用不当而导致的。那些看似简单的操作,如:正确的重建观察者(reestablishing watcher)、客户端Session与异常的处理与在ZK窗口中管理内存都是非常容易导致ZooKeeper出错的。同时,我们确实也遇到过 ZooKeeper的一些经典bug: ZooKeeper-1159 与 ZooKeeper-1576; 我们甚至在生产环境中遇到过ZooKeeper选举Leader节点失败的情况。这些问题之所以会出现,在于ZooKeeper需要管理与保障所管辖服务 群的Session与网络连接资源(注:这些资源的管理在分布式系统环境下是极其困难的);但是它不负责管理服务的发现,所以使用ZooKeeper当 Service发现服务得不偿失。

做出正确的选择:Eureka的成功

我们把Service发现服务从ZooKeeper切换到了Eureka平台,它是一个开 源的服务发现解决方案,由Netflix公司开发。(注:Eureka由两个组件组成:Eureka服务器和Eureka客户端。Eureka服务器用作 服务注册服务器。Eureka客户端是一个java客户端,用来简化与服务器的交互、作为轮询负载均衡器,并提供服务的故障切换支持。)Eureka一开 始就被设计成高可用与可伸缩的Service发现服务,这两个特点也是Netflix公司开发所有平台的两个特色。( 他们都在讨论Eureka)。自从切换工作开始到现在,我们实现了在生产环境中所有依赖于Eureka的产品没有下线维护的记录。我们也被告知过,在云平台做服务迁移注定要遇到失败;但是我们从这个例子中得到的经验是,一个优秀的Service发现服务在其中发挥了至关重要的作用!

首先,在Eureka平台中,如果某台服务器宕机,Eureka不会有类似于ZooKeeper的选举leader的过程;客户端请求会自动切换 到新的Eureka节点;当宕机的服务器重新恢复后,Eureka会再次将其纳入到服务器集群管理之中;而对于它来说,所有要做的无非是同步一些新的服务 注册信息而已。所以,再也不用担心有“掉队”的服务器恢复以后,会从Eureka服务器集群中剔除出去的风险了。Eureka甚至被设计用来应付范围更广 的网络分割故障,并实现“0”宕机维护需求。当网络分割故障发生时,每个Eureka节点,会持续的对外提供服务(注:ZooKeeper不会):接收新 的服务注册同时将它们提供给下游的服务发现请求。这样一来,就可以实现在同一个子网中(same side of partition),新发布的服务仍然可以被发现与访问。

但是,Eureka做到的不止这些。正常配置下,Eureka内置了心跳服务,用于淘汰一些“濒死”的服务器;如果在Eureka中注册的服务, 它的“心跳”变得迟缓时,Eureka会将其整个剔除出管理范围(这点有点像ZooKeeper的做法)。这是个很好的功能,但是当网络分割故障发生时, 这也是非常危险的;因为,那些因为网络问题(注:心跳慢被剔除了)而被剔除出去的服务器本身是很”健康“的,只是因为网络分割故障把Eureka集群分割 成了独立的子网而不能互访而已。

幸运的是,Netflix考虑到了这个缺陷。如果Eureka服务节点在短时间里丢失了大量的心跳连接(注:可能发生了网络故障),那么这个 Eureka节点会进入”自我保护模式“,同时保留那些“心跳死亡“的服务注册信息不过期。此时,这个Eureka节点对于新的服务还能提供注册服务,对 于”死亡“的仍然保留,以防还有客户端向其发起请求。当网络故障恢复后,这个Eureka节点会退出”自我保护模式“。所以Eureka的哲学是,同时保 留”好数据“与”坏数据“总比丢掉任何”好数据“要更好,所以这种模式在实践中非常有效。

最后,Eureka还有客户端缓存功能(注:Eureka分为客户端程序与服务器端程序两个部分,客户端程序负责向外提供注册与发现服务接口)。 所以即便Eureka集群中所有节点都失效,或者发生网络分割故障导致客户端不能访问任何一台Eureka服务器;Eureka服务的消费者仍然可以通过 Eureka客户端缓存来获取现有的服务注册信息。甚至最极端的环境下,所有正常的Eureka节点都不对请求产生相应,也没有更好的服务器解决方案来解 决这种问题时;得益于Eureka的客户端缓存技术,消费者服务仍然可以通过Eureka客户端查询与获取注册服务信息,这点很重要。

Eureka的构架保证了它能够成为Service发现服务。它相对与ZooKeeper来说剔除了Leader节点的选取或者事务日志机制,这 样做有利于减少使用者维护的难度也保证了Eureka的在运行时的健壮性。而且Eureka就是为发现服务所设计的,它有独立的客户端程序库,同时提供心 跳服务、服务健康监测、自动发布服务与自动刷新缓存的功能。但是,如果使用ZooKeeper你必须自己来实现这些功能。Eureka的所有库都是开源 的,所有人都能看到与使用这些源代码,这比那些只有一两个人能看或者维护的客户端库要好。

维护Eureka服务器也非常的简单,比如,切换一个节点只需要在现有EIP下移除一个现有的节点然后添加一个新的就行。Eureka提供了一个 web-based的图形化的运维界面,在这个界面中可以查看Eureka所管理的注册服务的运行状态信息:是否健康,运行日志等。Eureka甚至提供 了Restful-API接口,方便第三方程序集成Eureka的功能。

结论

关于Service发现服务通过本文我们想说明两点:1、留意服务运行的硬件平台;2、时刻关注你要解决的问题,然后决定 使用什么平台。Knewton就是从这两个方面考虑使用Eureka替换ZooKeeper来作为service发现服务的。云部署平台是充满不可靠性 的,Eureka可以应对这些缺陷;同时Service发现服务必须同时具备高可靠性与高弹性,Eureke就是我们想要的!


本文作者:佚名

来源:51CTO

相关文章
|
8月前
|
运维 监控 数据可视化
Hyper-V的哪些性能?使其成为企业构建云平台和虚拟化环境的首选
Hyper-V凭借高效性、灵活性、高可用性及管理简便性等优势,成为企业构建云平台和虚拟化环境的首选。其微内核架构、硬件辅助虚拟化技术和动态内存管理提升了性能与资源利用率;支持多操作系统和硬件平台,具备故障转移、实时迁移功能,确保业务连续性;提供可视化管理工具和PowerShell脚本自动化,简化管理流程;与Windows Server及Azure无缝集成,降低硬件、运维和能源成本。
|
消息中间件 监控 Ubuntu
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
387 3
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
|
监控 Dubbo Java
dubbo学习三:springboot整合dubbo+zookeeper,并使用dubbo管理界面监控服务是否注册到zookeeper上。
这篇文章详细介绍了如何将Spring Boot与Dubbo和Zookeeper整合,并通过Dubbo管理界面监控服务注册情况。
924 0
dubbo学习三:springboot整合dubbo+zookeeper,并使用dubbo管理界面监控服务是否注册到zookeeper上。
|
机器学习/深度学习 人工智能 物联网
探索云平台:构建未来计算的基石
本文旨在深入探讨云平台的基本概念、核心优势及其在现代IT架构中的关键作用。我们将从云计算的起源讲起,逐步解析云平台的运作机制,并通过具体案例展示其如何推动企业创新和效率提升。无论是创业者还是资深技术专家,了解云平台的本质和发展动向,都是把握未来科技趋势的重要一步。
418 2
|
Java Spring
spring cloud gateway在使用 zookeeper 注册中心时,配置https 进行服务转发
spring cloud gateway在使用 zookeeper 注册中心时,配置https 进行服务转发
421 3
|
弹性计算 人工智能 安全
蚂蚁数科MAPPIC密态计算云平台入驻阿里云计算巢,打造云上密态计算服务
阿里云计算巢新添成员——蚂蚁数科的MAPPIC密态计算云平台,旨在为企业提供安全的大数据和模型密态计算服务,促进数据资产和模型资产的挖掘。MAPPIC是融合AI和BI的隐私保护平台,支持N+接入方式和弹性计算。通过阿里云计算巢,企业能快速创建密态计算集群,降低使用门槛,同时提升业务可靠性和审计追溯能力。双方合作将加速密态计算在云上的应用,应对数据隐私和安全挑战。
蚂蚁数科MAPPIC密态计算云平台入驻阿里云计算巢,打造云上密态计算服务
|
移动开发 运维 算法
室内电子地图制作:位构云平台,快速构建轻量级多类型地图
在数字化时代,室内导航和空间信息管理变得日益重要。位构云平台以其强大的功能和用户友好的界面,为用户提供了一个全面的解决方案,轻松构建多平台、综合型地图引擎,满足从商场到校园等各种场景的需求。
437 1
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用构建高效云原生应用:云平台的选择与实践
【5月更文挑战第31天】 随着人工智能技术的飞速发展,深度学习已经成为推动计算机视觉进步的关键力量。特别是在图像识别领域,通过模仿人脑处理信息的方式,深度学习模型能够从大量数据中学习并识别复杂的图像模式。本文将探讨深度学习技术在自动驾驶系统中图像识别方面的应用,重点分析卷积神经网络(CNN)的结构与优化策略,以及如何通过这些技术提高自动驾驶车辆的环境感知能力。此外,文章还将讨论目前所面临的挑战和未来的研究方向。
|
存储 大数据 Apache
深入理解ZooKeeper:分布式协调服务的核心与实践
【5月更文挑战第7天】ZooKeeper是Apache的分布式协调服务,确保大规模分布式系统中的数据一致性与高可用性。其特点包括强一致性、高可用性、可靠性、顺序性和实时性。使用ZooKeeper涉及安装配置、启动服务、客户端连接及执行操作。实际应用中,面临性能瓶颈、不可伸缩性和单点故障等问题,可通过水平扩展、集成其他服务和多集群备份来解决。理解ZooKeeper原理和实践,有助于构建高效分布式系统。
|
存储 Java Spring
使用Spring Boot和Zookeeper实现服务协调
使用Spring Boot和Zookeeper实现服务协调

热门文章

最新文章