阿里云E-MapReduce Spark 作业配置

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,恶意文件检测 1000次 1年
对象存储 OSS,内容安全 1000次 1年
简介: 1.进入阿里云 E-MapReduce 控制台作业列表。 2.单击该页右上角的创建作业,进入创建作业页面。 3.填写作业名称。 4.选择 Spark 作业类型,表示创建的作业是一个 Spark 作业。

1.进入阿里云 E-MapReduce 控制台作业列表

2.单击该页右上角的创建作业,进入创建作业页面。

3.填写作业名称。

4.选择 Spark 作业类型,表示创建的作业是一个 Spark 作业。Spark 作业在 E-MapReduce 后台使用以下的方式提交:

spark-submit [options] --class [MainClass] xxx.jar args
5.在应用参数选项框中填写提交该 Spark 作业需要的命令行参数。请注意,应用参数框中只需要填写“spark-submit”之后的参数即可。以下分别示例如何填写创建 Spark 作业和 pyspark 作业的参数。

创建 Spark 作业

新建一个 Spark WordCount 作业。

作业名称: Wordcount

类型:选择 Spark

应用参数:

在命令行下完整的提交命令是:

spark-submit --master yarn-client --driver-memory 7G --executor-memory 5G --executor-cores 1 --num-executors 32 --class com.aliyun.emr.checklist.benchmark.SparkWordCount emr-checklist_2.10-0.1.0.jar oss://emr/checklist/data/wc oss://emr/checklist/data/wc-counts 32

在 E-MapReduce 作业的应用参数框中只需要填写:

--master yarn-client --driver-memory 7G --executor-memory 5G --executor-cores 1 --num-executors 32 --class com.aliyun.emr.checklist.benchmark.SparkWordCount ossref://emr/checklist/jars/emr-checklist_2.10-0.1.0.jar oss://emr/checklist/data/wc oss://emr/checklist/data/wc-counts 32

需要注意的是:作业 Jar 包保存在 OSS 中,引用这个 Jar 包的方式是 ossref://emr/checklist/jars/emr-checklist_2.10-0.1.0.jar。您可以单击选择 OSS 路径,从 OSS 中进行浏览和选择,系统会自动补齐 OSS 上 Spark 脚本的绝对路径。请务必将默认的“oss”协议切换成“ossref”协议。

创建 pyspark 作业

E-MapReduce 除了支持 Scala 或者 Java 类型作业外,还支持 python 类型 Spark 作业。以下新建一个 python 脚本的 Spark Kmeans 作业。

作业名称:Python-Kmeans

类型:Spark

应用参数:

--master yarn-client --driver-memory 7g --num-executors 10 --executor-memory 5g --executor-cores 1  ossref://emr/checklist/python/kmeans.py oss://emr/checklist/data/kddb 5 32

支持 Python 脚本资源的引用,同样使用“ossref”协议。

pyspark 目前不支持在线安装 Python 工具包。

6选择执行失败后策略。

7.单击确定,Spark 作业即定义完成。

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
103 2
|
3天前
|
存储 分布式计算 调度
Spark Master HA 主从切换过程不会影响到集群已有作业的运行, 为什么?
Spark Master 的高可用性(HA)机制确保主节点故障时,备用主节点能无缝接管集群管理,保障稳定运行。关键在于: 1. **Driver 和 Executor 独立**:任务执行不依赖 Master。 2. **应用状态保持**:备用 Master 通过 ZooKeeper 恢复集群状态。 3. **ZooKeeper 协调**:快速选举新 Master 并同步状态。 4. **容错机制**:任务可在其他 Executor 上重新调度。 这些特性保证了集群在 Master 故障时仍能正常运行。
|
3天前
|
缓存 分布式计算 资源调度
Spark 与 MapReduce 的 Shuffle 的区别?
MapReduce 和 Spark 在 Shuffle 过程中有显著区别。MapReduce 采用两阶段模型,中间数据写入磁盘,I/O 开销大;而 Spark 使用基于内存的多阶段执行模型,支持操作合并和内存缓存,减少 I/O。Spark 的 RDD 转换优化减少了 Shuffle 次数,提升了性能。此外,Spark 通过 lineage 实现容错,资源管理更灵活,整体大数据处理效率更高。
|
2月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
4月前
|
SQL 分布式计算 Serverless
阿里云 EMR Serverless Spark 版正式开启商业化
阿里云 EMR Serverless Spark 版正式开启商业化,内置 Fusion Engine,100% 兼容开源 Spark 编程接口,相比于开源 Spark 性能提升300%;提供 Notebook 及 SQL 开发、调试、发布、调度、监控诊断等一站式数据开发体验!
205 3
阿里云 EMR Serverless Spark 版正式开启商业化
|
5月前
|
分布式计算 安全 OLAP
7倍性能提升|阿里云AnalyticDB Spark向量化能力解析
AnalyticDB Spark如何通过向量化引擎提升性能?
|
5月前
|
SQL 分布式计算 监控
在hue上部署spark作业
8月更文挑战第10天
|
5月前
|
分布式计算 并行计算 数据处理
|
5月前
|
分布式计算 资源调度 监控
MapReduce程序中的主要配置参数详解
【8月更文挑战第31天】
253 0
|
6月前
|
分布式计算 Serverless Spark
【开发者评测】E-MapReduce Serverless Spark获奖名单
E-MapReduce Serverless Spark获奖名单正式公布!
195 1