浅析机器视觉测试系统市场现状

简介:

早在20世纪80年代,美国国家标准局就曾预计未来90%的检测任务将由视觉测试系统来完成,机器视觉测试技术在国外得到了快速发展. 仅在80年代,美国就有100多家公司跻身于视觉测试系统的经营市场,可见视觉测试系统确实很有发展前途。

在近几届北京国际机床展览会上已经见到国外企业展出的应用视觉检测技术研制的先进仪器,如流动式光学三坐标测量机、高速高精度数字化扫描系统、非接触式光学三坐标测量机等。他们可以广泛应用于在线测量、逆向工程等主动、实时测量过程。

现代工业自动化生产中涉及到各种各样的检验、生产监视和零件识别应用,如汽车零配件批量加工的尺寸检查和自动装配的完整性检查、电子装配线的元件自动定位、IC上的字符识别等。通常这种带有高度重复性和智能性的工作是由肉眼来完成的,但在某些特殊情况下,如对微小尺寸的精确快速测量、形状匹配以及颜色辨识等,依靠肉眼根本无法连续稳定地进行,其它物理量传感器也难以胜任。人们开始考虑用CCD照相机抓取图像后送入计算机或专用的图像处理模块,通过数字化处理,根据像素分布和亮度、颜色等信息来进行尺寸、形状、颜色等的判别。这种方法是把计算机处理的快速性、可重复性与肉眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉测试技术的概念。

视觉测试技术是建立在计算机视觉研究基础上的一门新兴测试技术。与计算机视觉研究的视觉模式识别、视觉理解等内容不同,视觉测试技术重点研究的是物体的几何尺寸及物体的位置测量,如轿车白车身三维尺寸的测量、模具等三维面形的快速测量、大型工件同轴度测量以及共面性测量等。

机器视觉系统强调的是精度、速度以及工业现场环境下的可靠性。机器视觉特别适用于大批量生产过程中的质量检查,如:零件装配完整性、装配尺寸精度、零件加工精度、位置/角度测量、零件识别、特性/字符识别等,主要应用于包括汽车、制药、电子与电气、制造、包装、食品、饮料、医学等领域,用于对汽车仪表盘加工精度的检查、高速贴片机上对电子元件的快速定位、对管脚数目的检查、IC表面印字符的辨识、胶囊生产中对胶囊壁厚和外观缺陷的检查、轴承生产中对滚珠数量和破损情况的检查、食品包装上对生产日期的辨识、对标签贴放位置的检查以及医疗方面对细胞数量和性质的判断等。在现代自动化生产过程中,机器视觉系统还广泛地用于工况监视、成品检验和质量控制等领域。

从视觉系统的运行环境分类,可分为PC—BASED系统和PLC—BASED系统。目前世界一流的PC—Based视觉系统生产厂商美国Data Translation公司,其MACH 系列(如DT3155)和MV系列PC I工业视觉卡已经成为业界标准;配套软件方面,32位SDK for Windows95/98/NT提供C/C++编程用DLL,DT Active Open Layer可视化控件提供VB和VC++下的图形化编程环境,而DT Vision Foundry则是Windows下面向对象的机器视觉组态软件,用户可用它快速开发复杂高级的应用。类似的还有美国NI公司,该公司将机器视觉和运动控制功能与其被广泛应用的Labview虚拟仪器软件相结合,效果显著。

而日本和德国公司在PLC—Based系统方面走在前列,日本松下公司的Image Checker M100/M200系统可说是这方面的代表。该系统利用高速专用ASIC进行256级灰度检测,带逻辑条件和数学运算功能。系统软件固化在图像处理器中,通过类似于游戏键盘的简单装置对显示在监视器中的菜单进行配置,开发周期短,系统可靠性高,其新一代产品A110/A210体现了集成化、小型化、高速化和低成本的特点。欧姆龙、Keyence等公司也有类似的系统,但在技术性能上相对简单,更适用于进行有无判别或形状匹配等。

德国Siemens公司的智能化PROFIBUS工业视觉系统SIMATICVS 710提供了一体化的、分布式的高档图像处理方案,它将处理器、CCD、I/O集成在一个机箱内,提供PROFIBUS的联网方式或集成的I/O和RS232接口,更重要的是通过PCWINDOWS下的Pro Vision软件进行组态。VS 710第一次将PC的灵活性、PLC的可靠性、分布式网络技术和一体化设计结合在一起,使得西门子在PC和PLC体系之间找到了完美的平衡。

国际上视觉系统的应用方兴未艾,仅1998年的市场规模已达46亿美元,而在国内,工业视觉系统尚处于概念导人期,各行业的领先企业在解决了生产自动化的问题以后,才开始将目光转向视觉测量自动化。机器视觉产品服务商朗锐智科(www.lrist.com)相信在当今电子、光学和计算机等技术不断成熟和完善的基础上,国内视觉技术这个新兴技术门类将会得到迅速发展。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能革命:现状与未来展望
【10月更文挑战第2天】 本文深入探讨了人工智能在软件测试领域的应用现状、面临的挑战以及未来的发展方向。通过分析AI技术如何提高测试效率、准确性和自动化水平,文章揭示了AI在改变传统软件测试模式中的关键作用。同时,指出了当前AI测试工具的局限性,并对未来AI与软件测试深度融合的前景进行了展望,强调了技术创新对于提升软件质量的重要性。
64 4
|
4天前
|
Linux Shell 网络安全
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
本指南介绍如何利用 HTA 文件和 Metasploit 框架进行渗透测试。通过创建反向 shell、生成 HTA 文件、设置 HTTP 服务器和发送文件,最终实现对目标系统的控制。适用于教育目的,需合法授权。
29 9
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
|
26天前
|
数据库连接 Go 数据库
Go语言中的错误注入与防御编程。错误注入通过模拟网络故障、数据库错误等,测试系统稳定性
本文探讨了Go语言中的错误注入与防御编程。错误注入通过模拟网络故障、数据库错误等,测试系统稳定性;防御编程则强调在编码时考虑各种错误情况,确保程序健壮性。文章详细介绍了这两种技术在Go语言中的实现方法及其重要性,旨在提升软件质量和可靠性。
27 1
|
2月前
|
监控 测试技术
如何进行系统压力测试?
【10月更文挑战第11天】如何进行系统压力测试?
142 34
|
2月前
|
存储 监控 网络协议
服务器压力测试是一种评估系统在极端条件下的表现和稳定性的技术
【10月更文挑战第11天】服务器压力测试是一种评估系统在极端条件下的表现和稳定性的技术
130 32
|
1月前
|
缓存 监控 测试技术
全网最全压测指南!教你如何测试和优化系统极限性能
大家好,我是小米。本文将介绍如何在实际项目中进行性能压测和优化,包括单台服务器和集群压测、使用JMeter、监控CPU和内存使用率、优化Tomcat和数据库配置等方面的内容,帮助你在高并发场景下提升系统性能。希望这些实战经验能助你一臂之力!
69 3
|
1月前
|
编解码 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(10-2):保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS
保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能:现状与未来
【10月更文挑战第6天】 本文探讨了人工智能在软件测试中的应用,包括自动化测试、智能缺陷分析以及测试用例生成等方面。通过案例分析和未来趋势预测,文章展示了AI如何提高软件测试的效率和准确性,并指出了当前面临的挑战和未来的发展方向。
49 1
|
2月前
|
机器学习/深度学习 人工智能 算法
软件测试中的人工智能:现状与未来
本文探讨了软件测试领域中人工智能的当前应用和未来发展,分析了AI技术在提升测试效率、准确性和自动化方面的潜力。通过实例展示了AI如何帮助发现复杂缺陷,并展望了AI在软件测试中的进一步应用前景。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能:现状与未来
本文探讨了人工智能在软件测试中的应用,包括自动化测试、智能缺陷分析以及测试用例生成等方面。通过案例展示了AI如何提升测试效率和质量,并讨论了当前面临的挑战及未来发展趋势。