各大排序算法的Objective-C实现以及图形化演示比较

简介:

各大排序算法的Objective-C实现以及图形化演示比较


用Objective-C实现几种基本的排序算法,并把排序的过程图形化显示。其实算法还是挺有趣的 ^ ^.

  • 选择排序
  • 冒泡排序
  • 插入排序
  • 快速排序

选择排序

以升序为例。

选择排序比较好理解,一句话概括就是依次按位置挑选出适合此位置的元素来填充。

  1. 暂定第一个元素为最小元素,往后遍历,逐个与最小元素比较,若发现更小者,与先前的”最小元素”交换位置。达到更新最小元素的目的。
  2. 一趟遍历完成后,能确保刚刚完成的这一趟遍历中,最的小元素已经放置在前方了。然后缩小排序范围,新一趟排序从数组的第二个元素开始。
  3. 在新一轮排序中重复第1、2步骤,直到范围不能缩小为止,排序完成。

各大排序算法的Objective-C实现以及图形化演示比较
选择排序

以下方法在NSMutableArray+JXSort.m中实现


 
 
  1. - (void)jx_selectionSortUsingComparator:(JXSortComparator)comparator didExchange:(JXSortExchangeCallback)exchangeCallback {  
  2. if (self.count == 0) {  
  3. return;  
  4. }  
  5. for (NSInteger i = 0; i < self.count - 1; i ++) { 
  6. for (NSInteger j = i + 1; j < self.count; j ++) {  
  7. if (comparator(self[i], self[j]) == NSOrderedDescending) {  
  8. [self jx_exchangeWithIndexA:i indexB:j didExchange:exchangeCallback];  
  9. }  
  10. }  
  11. }  

冒泡排序

在一趟遍历中,不断地对相邻的两个元素进行排序,小的在前大的在后,这样会造成大值不断沉底的效果,当一趟遍历完成时,最大的元素会被排在后方正确的位置上。

然后缩小排序范围,即去掉最后方位置正确的元素,对前方数组进行新一轮遍历,重复第1步骤。直到范围不能缩小为止,排序完成。

各大排序算法的Objective-C实现以及图形化演示比较

冒泡排序

 
 
  1. - (void)jx_bubbleSortUsingComparator:(JXSortComparator)comparator didExchange:(JXSortExchangeCallback)exchangeCallback {  
  2. if (self.count == 0) {  
  3. return;  
  4. }  
  5. for (NSInteger i = self.count - 1; i > 0; i --) {  
  6. for (NSInteger j = 0; j < i; j ++) {  
  7. if (comparator(self[j], self[j + 1]) == NSOrderedDescending) {  
  8. [self jx_exchangeWithIndexA:j indexB:j + 1 didExchange:exchangeCallback];  
  9. }  
  10. }  
  11. }  

插入排序

插入排序是从一个乱序的数组中依次取值,插入到一个已经排好序的数组中。

这看起来好像要两个数组才能完成,但如果只想在同一个数组内排序,也是可以的。此时需要想象出两个区域:前方有序区和后方乱序区。

1、分区。开始时前方有序区只有一个元素,就是数组的第一个元素。然后把从第二个元素开始直到结尾的数组作为乱序区。

2、从乱序区取第一个元素,把它正确插入到前方有序区中。把它与前方无序区的最后一个元素比较,亦即与它的前一个元素比较。

  • 如果比前一个元素要大,则不需要交换,这时有序区扩充一格,乱序区往后缩减一格,相当于直接拼在有序区末尾。
  • 如果和前一个元素相等,则继续和前二元素比较、再和前三元素比较……如果往前遍历到头了,发现前方所有元素值都长一个样的话(囧),那也可以,不需要交换,这时有序区扩充一格,乱序区往后缩减一格,相当于直接拼在有序区末尾。如果比前一个元素大呢?对不起作为有序区不可能出现这种情况。如果比前一个元素小呢,请看下一点。
  • 如果比前一个元素小,则交换它们的位置。交换完后,继续比较取出元素和它此时的前一个元素,若更小就交换,若相等就比较前一个,直到遍历完成。至此,把乱序区第一个元素正确插入到前方有序区中。

3、往后缩小乱序区范围,继续取缩小范围后的第一个元素,重复第2步骤。直到范围不能缩小为止,排序完成。

各大排序算法的Objective-C实现以及图形化演示比较

插入排序

 
 
  1. - (void)jx_insertionSortUsingComparator:(JXSortComparator)comparator didExchange:(JXSortExchangeCallback)exchangeCallback {  
  2. if (self.count == 0) {  
  3. return;  
  4. }  
  5. for (NSInteger i = 1; i < self.count; i ++) {  
  6. for (NSInteger j = i; j > 0 && comparator(self[j], self[j - 1]) == NSOrderedAscending; j --) {  
  7. [self jx_exchangeWithIndexA:j indexB:j - 1 didExchange:exchangeCallback];  
  8. }  
  9. }  

快速排序

快排的版本有好几种,粗略可分为:

  1. 原始的快排。
  2. 为制造适合高效排序环境而事先打乱数组顺序的快排。
  3. 为数组内大量重复值而优化的三向切分快排。

这里只讨论原始的快排。

关于在快排过程中何时进行交换以及交换谁的问题,我看见两种不同的思路:

  1. 当左右两个游标都停止时,交换两个游标所指向元素。枢轴所在位置暂时不变,直到两个游标相遇重合,才更新枢轴位置,交换枢轴与游标所指元素。
  2. 当右游标找到一个比枢轴小的元素时,马上把枢轴交换到游标所在位置,而游标位置的元素则移到枢轴那里。完成一次枢轴更新。然后左游标再去寻找比枢轴大的元素,同理。

第1种思路可以有效降低交换频率,在游标相遇后再对枢轴进行定位,这步会导致略微增加了比较的次数;

第2种思路交换操作会比较频繁,但是在交换的过程中同时也把枢轴的位置不断进行更新,当游标相遇时,枢轴的定位也完成了。

在两种思路都尝试实现过后,我还是喜欢第2种,即便交换操作会多一些,但实质上的交换只是对数组特定位置的赋值,这种操作还是挺快的。

  1. 从待排序数组中选一个值作为分区的参考界线,一般选第一个元素即可。这个选出来的值可叫做枢轴pivot,它将会在一趟排序中不断被移动位置,只终移动到位于整个数组的正确位置上。
  2. 一趟排序的目标是把小于枢轴的元素放在前方,把大于枢轴的元素放在后方,枢轴放在中间。这看起来一趟排序实质上所干的事情就是把数组分区。接下来考虑怎么完成一次分区。
  3. 记一个游标i,指向待排序数组的首位,它将会不断向后移动;
    再记一个游标j,指向待排序数组的末位,它将会不断向前移动。
    这样可以预见的是,i 、j终有相遇时,当它们相遇的时候,就是这趟排序完成时。
  4. 现在让游标j从后往前扫描,寻找比枢轴小的元素x,找到后停下来,准备把这个元素扔到前方去。
  5. 在同一个数组内排序并不能扩大数组的容量,那怎么扔呢?
    因为刚才把首位元素选作为pivot,所以当前它们的位置关系是pivot ... x。
    又排序目标是升序,x是个小值却放在了pivot的后方,不妥,需要交换它们的位置。
  6. 交换完后,它们的位置关系变成了x ... pivot。此时j指向了pivot,i指向了x。
  7. 现在让游标i向后扫描,寻找比枢轴大的元素y,找到后停下来,与pivot进行交换。
    完成后的位置关系是pivot ... y,此时i指向pivot,即pivot移到了i的位置。
  8. 这里有个小优化,在i向后扫描开始时,i是指向x的,而在上一轮j游标的扫描中我们已经知道x是比pivot小的,所以完全可以让i跳过x,不需要拿着x和pivot再比较一次。
    结论是在j游标的交换完成后,顺便把i往后移一位,i ++。
    同理,在i游标的交换完成后,顺便把j往前移一位,j --。
  9. 在扫描的过程中如果发现与枢轴相等的元素怎么办呢?
    因我们不讨论三向切分的快排优化算法,所以这里答案是:不理它。
    随着一趟一趟的排序,它们会慢慢被更小的元素往后挤,被更大的元素往前挤,最后的结果就是它们都会和枢轴一起移到了中间位置。
  10. 当i和j相遇时,i和j都会指向pivot。在我们的分区方法里,把i返回,即在分区完成后把枢轴位置返回。
  11. 接下来,让分出的两个数组分别按上述步骤各自分区,这是个递归的过程,直到数组不能再分时,排序完成。

快速排序是很天才的设计,实现不复杂,关键是它真的很快~

各大排序算法的Objective-C实现以及图形化演示比较

快速排序.gif


 
 
  1. - (void)jx_quickSortUsingComparator:(JXSortComparator)comparator didExchange:(JXSortExchangeCallback)exchangeCallback { 
  2. if (self.count == 0) {  
  3. return;  
  4. }  
  5. [self jx_quickSortWithLowIndex:0 highIndex:self.count - 1 usingComparator:comparator didExchange:exchangeCallback];  
  6. }  
  7. - (void)jx_quickSortWithLowIndex:(NSInteger)low highIndex:(NSInteger)high usingComparator:(JXSortComparator)comparator didExchange:(JXSortExchangeCallback)exchangeCallback { 
  8. if (low >= high) {  
  9. return;  
  10. }  
  11. NSInteger pivotIndex = [self jx_quickPartitionWithLowIndex:low highIndex:high usingComparator:comparator didExchange:exchangeCallback]; 
  12. [self jx_quickSortWithLowIndex:low highIndex:pivotIndex - 1 usingComparator:comparator didExchange:exchangeCallback]; 
  13. [self jx_quickSortWithLowIndex:pivotIndex + 1 highIndex:high usingComparator:comparator didExchange:exchangeCallback];  
  14. }  
  15. - (NSInteger)jx_quickPartitionWithLowIndex:(NSInteger)low highIndex:(NSInteger)high usingComparator:(JXSortComparator)comparator didExchange:(JXSortExchangeCallback)exchangeCallback { 
  16. id pivot = self[low];  
  17. NSInteger i = low; 
  18. NSInteger j = high;  
  19. while (i < j) {  
  20. // 略过大于等于pivot的元素  
  21. while (i < j && comparator(self[j], pivot) != NSOrderedAscending) {  
  22. --;  
  23. }  
  24. if (i < j) {  
  25. // i、j未相遇,说明找到了小于pivot的元素。交换。  
  26. [self jx_exchangeWithIndexA:i indexB:j didExchange:exchangeCallback];  
  27. i ++;  
  28. }  
  29. /// 略过小于等于pivot的元素  
  30. while (i < j && comparator(self[i], pivot) != NSOrderedDescending) {  
  31. i ++;  
  32. }  
  33. if (i < j) {  
  34. // i、j未相遇,说明找到了大于pivot的元素。交换。  
  35. [self jx_exchangeWithIndexA:i indexB:j didExchange:exchangeCallback];  
  36. --;  
  37. }  
  38. }  
  39. return i;  
  40. }

UI实现

现在讲下UI的实现思路。


 
 
  1. NSMutableArray+JXSort.h 

从前面的排序代码可以看到,我是给NSMutableArray写了个分类,排序逻辑写在分类里面,完全与视图无关。


 
 
  1. typedef NSComparisonResult(^JXSortComparator)(id obj1, id obj2);  
  2. typedef void(^JXSortExchangeCallback)(id obj1, id obj2);  
  3. @interface NSMutableArray (JXSort)  
  4. // 选择排序  
  5. - (void)jx_selectionSortUsingComparator:(JXSortComparator)comparator didExchange:(JXSortExchangeCallback)exchangeCallback;  
  6. // 冒泡排序  
  7. - (void)jx_bubbleSortUsingComparator:(JXSortComparator)comparator didExchange:(JXSortExchangeCallback)exchangeCallback;  
  8. // 插入排序  
  9. - (void)jx_insertionSortUsingComparator:(JXSortComparator)comparator didExchange:(JXSortExchangeCallback)exchangeCallback;  
  10. // 快速排序  
  11. - (void)jx_quickSortUsingComparator:(JXSortComparator)comparator didExchange:(JXSortExchangeCallback)exchangeCallback;  
  12. @end 

外部调用者只需要传入两个参数:

  • comparator代码块。这是遵循苹果原有API的风格设计,在需要比较数组内的两个元素时,排序方法将会调用这个代码块,回传需要比较的两个元素给外部调用者,由外部调用者实现比较逻辑,并返回比较结果给排序方法。
  • exchangeCallback代码块。这个参数是实现视图变化的关键。排序方法在每次完成两个元素的交换时,都会调用这个代码块。外部调用者,比如ViewController就可以知道排序元素每一次变换位置的时机,从而同步视图的变化。

 
 
  1. - (void)jx_exchangeWithIndexA:(NSInteger)indexA indexB:(NSInteger)indexB didExchange:(JXSortExchangeCallback)exchangeCallback {  
  2. id temp = self[indexA];  
  3. self[indexA] = self[indexB];  
  4. self[indexB] = temp;  
  5. if (exchangeCallback) {  
  6. exchangeCallback(temp, self[indexA]);  
  7. }  
  8. }  
  9. ViewController.m 

视图控制器持有待排序的数组,这个数组是100条细长的矩形,长度随机。


 
 
  1. @property (nonatomic, strong) NSMutableArray *barArray; 

由于我们加强了NSMutableArray,它现在可以支持多种指定类型的排序了,同时也可以把排序过程反馈给我们,当需要给barArray排序时,只需要这样调用:


 
 
  1. - (void)quickSort {  
  2. [self.barArray jx_quickSortUsingComparator:^NSComparisonResult(id obj1, id obj2) {  
  3. return [self compareWithBarOne:obj1 andBarTwo:obj2];  
  4. } didExchange:^(id obj1, id obj2) {  
  5. [self exchangePositionWithBarOne:obj1 andBarTwo:obj2];  
  6. }];  

每一次didExchange的回调,ViewController都会对两个视图的位置进行交换。如此形成不断进行排序的视觉效果。

控制排序速度

为了能够让肉眼感知排序的过程,我们需要放慢排序的过程。

这里我的办法是延长两个元素比较操作的耗时,大约延长到0.002秒。结果很明显,当某个算法所需要进行的比较操作越少时,它排序就会越快(根据上面四张图的比较,毫无疑问快排所进行的比较操作是最少啦~)。

那么如何模拟出比较操作的耗时时间呢?

这里我的办法是借助信号量,在两条线程间通讯。

1.让排序在子线程中进行,当需要进行比较操作时,阻塞线程,等待信号的到来。这里的思想是得到一个信号才能进行一次比较。


 
 
  1. - (NSComparisonResult)compareWithBarOne:(UIView *)barOne andBarTwo:(UIView *)barTwo {  
  2. // 模拟进行比较所需的耗时  
  3. dispatch_semaphore_wait(self.sema, DISPATCH_TIME_FOREVER);  
  4. CGFloat height1 = CGRectGetHeight(barOne.frame);  
  5. CGFloat height2 = CGRectGetHeight(barTwo.frame);  
  6. if (height1 == height2) {  
  7. return NSOrderedSame;  
  8. }  
  9. return height1 < height2 ? NSOrderedAscending : NSOrderedDescending;  

2.主线程启用定时器,每隔0.002秒发出一个信号,唤醒排序线程。


 
 
  1. self.sema = dispatch_semaphore_create(0);  
  2. NSTimeInterval nowTime = [[NSDate date] timeIntervalSince1970];  
  3. // 定时器信号  
  4. __weak typeof(self) weakSelf = self;  
  5. self.timer = [NSTimer scheduledTimerWithTimeInterval:0.002 repeats:YES block:^(NSTimer * _Nonnull timer) {  
  6. // 发出信号量,唤醒排序线程  
  7. dispatch_semaphore_signal(weakSelf.sema);  
  8. // 更新计时  
  9. NSTimeInterval interval = [[NSDate date] timeIntervalSince1970] - nowTime;  
  10. weakSelf.timeLabel.text = [NSString stringWithFormat:@"耗时(秒):%2.3f", interval];  
  11. }]; 



作者:梁炯幸

来源:51CTO

相关文章
|
算法 数据安全/隐私保护 iOS开发
|
存储 缓存 iOS开发
深入Objective-C Runtime机制(一):类和对象的实现
1.概要      对于Runtime系统,相信大部分iOS开发工程师都有着或多或少的了解。对于Objective-C,Runtime系统是至关重要的,可以说是Runtime系统让Objective-C成为了区分于C语言,C++之外的一门独立开发语言,让OC在拥有了自己的面向对象的特性以及消息发送机制。并且因为其强大的消息发送机制,也让很多人认为Object
2030 0
|
存储 iOS开发
上古时代 Objective-C 中哈希表的实现
因为 ObjC 的 runtime 只能在 Mac OS 下才能编译,所以文章中的代码都是在 Mac OS,也就是 x86_64 架构下运行的,对于在 arm64 中运行的代码会特别说明。 写在前面 文章会介绍上古时代 Objective-C 哈希表,也就是 NXHashTable : NXHashTable 的实现 NXHashTable 的性
1370 0
|
iOS开发
iOS,Objective-C,相册功能的实现。
#import "ViewController.h" #define kuan [UIScreen mainScreen].bounds.size.width #define gao [UIScreen mainScreen].
890 0

热门文章

最新文章