傅盛:深度学习是一种新的思维方式(上)

简介:

落后最怕的是思维方式的落后。

过去猎豹在安全和工具层面,抓住了上一个时代的大风口。如今这条赛道不再像以前那样野蛮生长。

互联网已经进入下半场,广度红利时代结束。原先粗放式的流量经营模式遭遇瓶颈,用户增长受限,且再难出现爆发性机会。下一个机会点在哪?

我讲过,人工智能会是下一个风口。

但,首先我们必须认识到——人工智能一定不是简单的一个神经网络,也不是用一个新的函数替代一个旧的函数。人工智能是对整个产业的重构,是对我们整个思维方法的重新塑造。

它将现实所有物理事件产生的东西归结于一个点——数据。然后,再把这个数据,用神经网络的方式去认知和理解,达到过去所有算法无法企及的高度。

而深度学习,无疑成为当今人工智能大爆炸的核心驱动。它不只是一种算法的升级,而是一种全新的思维模式。

今天,我们完全可以利用深度学习,利用海量数据的快速运算,消除信息的不确定性,帮助我们认知世界。

这种认知的可能性,最广为人知的就是AlphaGo打败李世石。我说过,现象即规律。这个现象给我最大的启示就是——把过去围棋的定式算法问题,转换成了黑白点的数据问题。它利用神经网络超大规模的数据处理能力,去理解人类记录过的围棋数据,以及自己左右互搏产生的海量数据,在人类也不明白的情况下,一举碾压了人族。

它带来的颠覆性在于:将人类过去痴迷的算法问题,变成了数据和计算问题。

我认为,这是重构技术模式,产品形态,用户理解的新方式。深度学习的突飞猛进,也将使得猎豹这样的工具厂商,有机会与社交产品站在同一维度同台竞争。

唯一需要思考的是:如何让用户成为一种生产力?

比如,你觉得特斯拉是汽车生产商吗?如果你重新换个角度,会发现特斯拉本质是一个数据采集器。它利用汽车载体实现了对人类驾驶行为的触达。

我最新买的特斯拉P90D,已经可以自主学习变道。它会多次来回试探,学习你开车的动作。你每一次开车,都是在给它贡献数据。它跟谷歌的无人驾驶有很大不同。

他们走了完全不一样的路线,思维角度也不一样。

谷歌是传统的软件工程思维。用高精尖地图,把一段路的地图精确到厘米级,以便车子开的过程中就知道路况,通过激光来避开路面障碍。但问题在于,这套方案,只有知道地图和路况不发生改变时才能运行。

但特斯拉用的是NVIDIA+Mobileye的方案,跟人开车的状态一样。它认为,辅助驾驶到了一定程度就是实现无人驾驶。只要收集大量的驾驶数据做处理。不用管地图,用产品就能实现数据收集。实际上,就是把所有路况信息和人的操作动作数据化。

我认为,未来的公司本质都是数据公司。市场的竞争,一定会从技术竞争演变成数据竞争。

各公司的商业策略和产品策略,都会围绕着获取数据开展。后进的公司要想不坐以待毙,唯一的办法就是快速获得数据。

深度学习绝不只是一场技术革命,或一种算法的改良。本质上,它是一种全新的理解用户和商业模式的思维方式。

本文作者:傅盛


来源:51CTO

相关文章
|
3月前
|
机器学习/深度学习 数据采集 算法
深度学习之思维控制的设备
基于深度学习的思维控制设备是一种创新技术,旨在通过解析脑电图(EEG)等脑信号,使用户能够通过思维直接控制设备。这一领域结合了脑-机接口(BCI)技术和深度学习,广泛应用于医疗、游戏和辅助设备等领域。
24 2
|
14天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
63 5
|
6天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
41 19
|
6天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
43 7
|
16天前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。
|
16天前
|
机器学习/深度学习 数据采集 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的基本原理、优势以及面临的主要挑战。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率,同时指出了数据质量、模型泛化能力和计算资源等关键因素对性能的影响。
|
16天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用及其面临的挑战。通过分析深度学习模型如卷积神经网络(CNN)的工作原理,我们揭示了这些模型如何有效地处理和识别图像数据。同时,文章也指出了当前深度学习在图像识别中遇到的一些主要问题,包括过拟合、数据集偏差和模型解释性等,为读者提供了对这一领域全面而深入的理解。
|
17天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的深度学习模型及其在图像识别中的优势和面临的挑战。通过具体案例分析,揭示了深度学习如何推动图像识别技术的边界,并讨论了未来可能的发展方向。
31 4
|
16天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的革命性应用####
本文不采用传统摘要形式,直接以一段引人入胜的事实开头:想象一下,一台机器能够比人类更快速、更准确地识别出图片中的对象,这不再是科幻电影的情节,而是深度学习技术在图像识别领域带来的现实变革。通过构建复杂的神经网络模型,特别是卷积神经网络(CNN),计算机能够从海量数据中学习到丰富的视觉特征,从而实现对图像内容的高效理解和分类。本文将深入探讨深度学习如何改变图像识别的游戏规则,以及这一技术背后的原理、关键挑战与未来趋势。 ####
41 1
|
16天前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶中的应用####
随着人工智能技术的飞速发展,深度学习已成为推动自动驾驶技术突破的关键力量之一。本文深入探讨了深度学习算法,特别是卷积神经网络(CNN)在图像识别领域的创新应用,以及这些技术如何被集成到自动驾驶汽车的视觉系统中,实现对复杂道路环境的实时感知与理解,从而提升驾驶的安全性和效率。通过分析当前技术的最前沿进展、面临的挑战及未来趋势,本文旨在为读者提供一个全面而深入的视角,理解深度学习如何塑造自动驾驶的未来。 ####
67 1
下一篇
DataWorks