Java并发开发:Lock框架详解

简介:

摘要:

我们已经知道,synchronized 是java的关键字,是Java的内置特性,在JVM层面实现了对临界资源的同步互斥访问,但 synchronized 粒度有些大,在处理实际问题时存在诸多局限性,比如响应中断等。Lock 提供了比 synchronized更广泛的锁操作,它能以更优雅的方式处理线程同步问题。本文以synchronized与Lock的对比为切入点,对Java中的Lock框架的枝干部分进行了详细介绍,最后给出了锁的一些相关概念。

一. synchronized 的局限性 与 Lock 的优点

回顾文章《Java 并发:内置锁 Synchronized》,如果一个代码块被synchronized关键字修饰,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待直至占有锁的线程释放锁。事实上,占有锁的线程释放锁一般会是以下三种情况之一:

  • 占有锁的线程执行完了该代码块,然后释放对锁的占有;
  • 占有锁线程执行发生异常,此时JVM会让线程自动释放锁;
  • 占有锁线程进入 WAITING 状态从而释放锁,例如在该线程中调用wait()方法等。

synchronized 是Java语言的内置特性,可以轻松实现对临界资源的同步互斥访问。那么,为什么还会出现Lock呢?试考虑以下三种情况:

Case 1 :

在使用synchronized关键字的情形下,假如占有锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,那么其他线程就只能一直等待,别无他法。这会极大影响程序执行效率。因此,就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间 (解决方案:tryLock(long time, TimeUnit unit)) 或者 能够响应中断 (解决方案:lockInterruptibly())),这种情况可以通过 Lock 解决。

Case 2 :

我们知道,当多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作也会发生冲突现象,但是读操作和读操作不会发生冲突现象。但是如果采用synchronized关键字实现同步的话,就会导致一个问题,即当多个线程都只是进行读操作时,也只有一个线程在可以进行读操作,其他线程只能等待锁的释放而无法进行读操作。因此,需要一种机制来使得当多个线程都只是进行读操作时,线程之间不会发生冲突。同样地,Lock也可以解决这种情况 (解决方案:ReentrantReadWriteLock) 。

Case 3 :

我们可以通过Lock得知线程有没有成功获取到锁 (解决方案:ReentrantLock) ,但这个是synchronized无法办到的。

上面提到的三种情形,我们都可以通过Lock来解决,但 synchronized 关键字却无能为力。事实上,Lock 是 java.util.concurrent.locks包 下的接口,Lock 实现提供了比 synchronized 关键字 更广泛的锁操作,它能以更优雅的方式处理线程同步问题。也就是说,Lock提供了比synchronized更多的功能。但是要注意以下几点:

1)synchronized是Java的关键字,因此是Java的内置特性,是基于JVM层面实现的。而Lock是一个Java接口,是基于JDK层面实现的,通过这个接口可以实现同步访问;

2)采用synchronized方式不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而 Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致死锁现象。

二. java.util.concurrent.locks包下常用的类与接口

以下是 java.util.concurrent.locks包下主要常用的类与接口的关系:

1、Lock

通过查看Lock的源码可知,Lock 是一个接口:

public interface Lock {
    void lock();
    void lockInterruptibly() throws InterruptedException;  // 可以响应中断
    boolean tryLock();
    boolean tryLock(long time, TimeUnit unit) throws InterruptedException;  // 可以响应中断
    void unlock();
    Condition newCondition();
}

下面来逐个分析Lock接口中每个方法。lock()、tryLock()、tryLock(long time, TimeUnit unit) 和 lockInterruptibly()都是用来获取锁的。unLock()方法是用来释放锁的。newCondition() 返回 绑定到此 Lock 的新的 Condition 实例 ,用于线程间的协作,详细内容见文章《Java 并发:线程间通信与协作》

1). lock()

在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?首先,lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。在前面已经讲到,如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此,一般来说,使用Lock必须在try…catch…块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:

Lock lock = ...;
lock.lock();
try{
    //处理任务
}catch(Exception ex){

}finally{
    lock.unlock();   //释放锁
}

2). tryLock() & tryLock(long time, TimeUnit unit)

tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true;如果获取失败(即锁已被其他线程获取),则返回false,也就是说,这个方法无论如何都会立即返回(在拿不到锁时不会一直在那等待)。

tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false,同时可以响应中断。如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

一般情况下,通过tryLock来获取锁时是这样使用的:

Lock lock = ...;
if(lock.tryLock()) {
     try{
         //处理任务
     }catch(Exception ex){

     }finally{
         lock.unlock();   //释放锁
     } 
}else {
    //如果不能获取锁,则直接做其他事情
}

3). lockInterruptibly()

lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程 正在等待获取锁,则这个线程能够 响应中断,即中断线程的等待状态。例如,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出 InterruptedException,但推荐使用后者,原因稍后阐述。因此,lockInterruptibly()一般的使用形式如下:

public void method() throws InterruptedException {
    lock.lockInterruptibly();
    try {  
     //.....
    }
    finally {
        lock.unlock();
    }  
}

注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为interrupt()方法只能中断阻塞过程中的线程而不能中断正在运行过程中的线程。因此,当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,那么只有进行等待的情况下,才可以响应中断的。与 synchronized 相比,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

2、ReentrantLock

ReentrantLock,即 可重入锁。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例学习如何使用 ReentrantLock。

例 1 : Lock 的正确使用

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();

    public static void main(String[] args) {
        final Test test = new Test();

        new Thread("A") {
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();

        new Thread("B") {
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }

    public void insert(Thread thread) {
        Lock lock = new ReentrantLock();  // 注意这个地方:lock被声明为局部变量
        lock.lock();
        try {
            System.out.println("线程" + thread.getName() + "得到了锁...");
            for (int i = 0; i < 5; i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {

        } finally {
            System.out.println("线程" + thread.getName() + "释放了锁...");
            lock.unlock();
        }
    }
}/* Output:          线程A得到了锁...         线程B得到了锁...         线程A释放了锁...         线程B释放了锁...  *///:~

结果或许让人觉得诧异。第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么每个线程执行到lock.lock()处获取的是不同的锁,所以就不会对临界资源形成同步互斥访问。因此,我们只需要将lock声明为成员变量即可,如下所示。

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();  // 注意这个地方:lock被声明为成员变量
    ...
}/* Output:          线程A得到了锁...         线程A释放了锁...         线程B得到了锁...         线程B释放了锁...  *///:~

例 2 : tryLock() & tryLock(long time, TimeUnit unit)

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock(); // 注意这个地方:lock 被声明为成员变量

    public static void main(String[] args) {
        final Test test = new Test();

        new Thread("A") {
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();

        new Thread("B") {
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }

    public void insert(Thread thread) {
        if (lock.tryLock()) {     // 使用 tryLock()
            try {
                System.out.println("线程" + thread.getName() + "得到了锁...");
                for (int i = 0; i < 5; i++) {
                    arrayList.add(i);
                }
            } catch (Exception e) {

            } finally {
                System.out.println("线程" + thread.getName() + "释放了锁...");
                lock.unlock();
            }
        } else {
            System.out.println("线程" + thread.getName() + "获取锁失败...");
        }
    }
}/* Output:          线程A得到了锁...         线程B获取锁失败...         线程A释放了锁...  *///:~

与 tryLock() 不同的是,tryLock(long time, TimeUnit unit) 能够响应中断,即支持对获取锁的中断,但尝试获取一个内部锁的操作(进入一个 synchronized 块)是不能被中断的。如下所示:

public class Test {
    private Lock lock = new ReentrantLock();   
    public static void main(String[] args)  {
        Test test = new Test();
        MyThread thread1 = new MyThread(test,"A");
        MyThread thread2 = new MyThread(test,"B");
        thread1.start();
        thread2.start();

        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        thread2.interrupt();
    }  

    public void insert(Thread thread) throws InterruptedException{
        if(lock.tryLock(4, TimeUnit.SECONDS)){
            try {
                System.out.println("time=" + System.currentTimeMillis() + " ,线程 " + thread.getName()+"得到了锁...");
                long now = System.currentTimeMillis();
                while (System.currentTimeMillis() - now < 5000) {
                    // 为了避免Thread.sleep()而需要捕获InterruptedException而带来的理解上的困惑,
                    // 此处用这种方法空转3秒
                }
            }finally{
                lock.unlock();
            }
        }else {
            System.out.println("线程 " + thread.getName()+"放弃了对锁的获取...");
        }
    }
}

class MyThread extends Thread {
    private Test test = null;

    public MyThread(Test test,String name) {
        super(name);
        this.test = test;
    }

    @Override     public void run() {
        try {
            test.insert(Thread.currentThread());
        } catch (InterruptedException e) {
            System.out.println("time=" + System.currentTimeMillis() + " ,线程 " + Thread.currentThread().getName() + "被中断...");
        }
    }
}/* Output:          time=1486693682559, 线程A 得到了锁...         time=1486693684560, 线程B 被中断...(响应中断,时间恰好间隔2s)  *///:~

例 3 : 使用 lockInterruptibly() 响应中断

public class Test {
    private Lock lock = new ReentrantLock();   
    public static void main(String[] args)  {
        Test test = new Test();
        MyThread thread1 = new MyThread(test,"A");
        MyThread thread2 = new MyThread(test,"B");
        thread1.start();
        thread2.start();

        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        thread2.interrupt();
    }  

    public void insert(Thread thread) throws InterruptedException{
        //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将 InterruptedException 抛出
        lock.lockInterruptibly(); 
        try {  
            System.out.println("线程 " + thread.getName()+"得到了锁...");
            long startTime = System.currentTimeMillis();
            for(    ;     ; ) {              // 耗时操作
                if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
                    break;
                //插入数据
            }
        }finally {
            System.out.println(Thread.currentThread().getName()+"执行finally...");
            lock.unlock();
            System.out.println("线程 " + thread.getName()+"释放了锁");
        } 
        System.out.println("over");
    }
}

class MyThread extends Thread {
    private Test test = null;

    public MyThread(Test test,String name) {
        super(name);
        this.test = test;
    }

    @Override     public void run() {
        try {
            test.insert(Thread.currentThread());
        } catch (InterruptedException e) {
            System.out.println("线程 " + Thread.currentThread().getName() + "被中断...");
        }
    }
}/* Output:          线程 A得到了锁...         线程 B被中断...  *///:~

运行上述代码之后,发现 thread2 能够被正确中断,放弃对任务的执行。特别需要注意的是,如果需要正确中断等待锁的线程,必须将获取锁放在外面(try 语句块外),然后将 InterruptedException 抛出。如果不这样做,像如下代码所示:

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class Test {
    private Lock lock = new ReentrantLock();

    public static void main(String[] args) {
        Test test = new Test();
        MyThread thread1 = new MyThread(test, "A");
        MyThread thread2 = new MyThread(test, "B");
        thread1.start();
        thread2.start();

        try {
            Thread.sleep(5000);
            System.out.println("线程" + Thread.currentThread().getName()
                    + " 睡醒了...");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        thread2.interrupt();
    }

    public void insert(Thread thread) {

        try {
            // 注意,如果将获取锁放在try语句块里,则必定会执行finally语句块中的解锁操作。若线程在获取锁时被中断,则再执行解锁操作就会导致异常,因为该线程并未获得到锁。
            lock.lockInterruptibly();
            System.out.println("线程 " + thread.getName() + "得到了锁...");
            long startTime = System.currentTimeMillis();
            for (;;) {
                if (System.currentTimeMillis() - startTime >= Integer.MAX_VALUE) // 耗时操作
                    break;
                // 插入数据
            }
        } catch (Exception e) {

        } finally {
            System.out.println(Thread.currentThread().getName()
                    + "执行finally...");
            lock.unlock();
            System.out.println("线程 " + thread.getName() + "释放了锁...");
        }
    }
}

class MyThread extends Thread {
    private Test test = null;

    public MyThread(Test test, String name) {
        super(name);
        this.test = test;
    }

    @Override     public void run() {

        test.insert(Thread.currentThread());
        System.out.println("线程 " + Thread.currentThread().getName() + "被中断...");
    }
}/* Output:          线程A 得到了锁...         线程main 睡醒了...         B执行finally...         Exception in thread "B"              java.lang.IllegalMonitorStateException             at java.util.concurrent.locks.ReentrantLock$Sync.tryRelease(Unknown Source)             at java.util.concurrent.locks.AbstractQueuedSynchronizer.release(Unknown Source)             at java.util.concurrent.locks.ReentrantLock.unlock(Unknown Source)             at Test.insert(Test.java:39)             at MyThread.run(Test.java:56)  *///:~

注意,上述代码就将锁的获取操作放在try语句块里,则必定会执行finally语句块中的解锁操作。在 准备获取锁的 线程B 被中断后,再执行解锁操作就会抛出 IllegalMonitorStateException,因为该线程并未获得到锁却执行了解锁操作。

3、ReadWriteLock

ReadWriteLock也是一个接口,在它里面只定义了两个方法:

public interface ReadWriteLock {
    /**      * Returns the lock used for reading.      *      * @return the lock used for reading.      */
    Lock readLock();

    /**      * Returns the lock used for writing.      *      * @return the lock used for writing.      */
    Lock writeLock();
}

一个用来获取读锁,一个用来获取写锁。也就是说,将对临界资源的读写操作分成两个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的 ReentrantReadWriteLock 实现了 ReadWriteLock 接口。

4、ReentrantReadWriteLock

ReentrantReadWriteLock 里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。下面通过几个例子来看一下ReentrantReadWriteLock具体用法。假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:

public class Test {
    public static void main(String[] args)  {
        final Test test = new Test();

        new Thread("A"){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();

        new Thread("B"){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();

    }  

    public synchronized void get(Thread thread) {
        long start = System.currentTimeMillis();
        System.out.println("线程"+ thread.getName()+"开始读操作...");
        while(System.currentTimeMillis() - start <= 1) {
            System.out.println("线程"+ thread.getName()+"正在进行读操作...");
        }
        System.out.println("线程"+ thread.getName()+"读操作完毕...");
    }
}/* Output:          线程A开始读操作...         线程A正在进行读操作...         ...         线程A正在进行读操作...         线程A读操作完毕...         线程B开始读操作...         线程B正在进行读操作...         ...         线程B正在进行读操作...         线程B读操作完毕...  *///:~

这段程序的输出结果会是,直到线程A执行完读操作之后,才会打印线程B执行读操作的信息。而改成使用读写锁的话:

public class Test {
    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

    public static void main(String[] args) {
        final Test test = new Test();

        new Thread("A") {
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();

        new Thread("B") {
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
    }

    public void get(Thread thread) {
        rwl.readLock().lock(); // 在外面获取锁
        try {
            long start = System.currentTimeMillis();
            System.out.println("线程" + thread.getName() + "开始读操作...");
            while (System.currentTimeMillis() - start <= 1) {
                System.out.println("线程" + thread.getName() + "正在进行读操作...");
            }
            System.out.println("线程" + thread.getName() + "读操作完毕...");
        } finally {
            rwl.readLock().unlock();
        }
    }
}/* Output:          线程A开始读操作...         线程B开始读操作...         线程A正在进行读操作...         线程A正在进行读操作...         线程B正在进行读操作...         ...         线程A读操作完毕...         线程B读操作完毕...  *///:~

我们可以看到,线程A和线程B在同时进行读操作,这样就大大提升了读操作的效率。不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程也会一直等待释放写锁。

5、Lock和synchronized的选择

总的来说,Lock和synchronized有以下几点不同:

  • (1) Lock是一个接口,是JDK层面的实现;而synchronized是Java中的关键字,是Java的内置特性,是JVM层面的实现;
  • (2) synchronized 在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;
  • (3) Lock 可以让等待锁的线程响应中断,而使用synchronized时,等待的线程会一直等待下去,不能够响应中断;
  • (4) 通过Lock可以知道有没有成功获取锁,而synchronized却无法办到;
  • (5) Lock可以提高多个线程进行读操作的效率。

在性能上来说,如果竞争资源不激烈,两者的性能是差不多的。而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

三. 锁的相关概念介绍

1、可重入锁

如果锁具备可重入性,则称作为 可重入锁 。像 synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了 锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。

class MyClass {
    public synchronized void method1() {
        method2();
    }

    public synchronized void method2() {

    }
}

上述代码中的两个方法method1和method2都用synchronized修饰了。假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是,这就会造成死锁,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。

2、可中断锁

顾名思义,可中断锁就是可以响应中断的锁。在Java中,synchronized就不是可中断锁,而Lock是可中断锁。
如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。在前面演示tryLock(long time, TimeUnit unit)和lockInterruptibly()的用法时已经体现了Lock的可中断性。

3、公平锁

公平锁即 尽量 以请求锁的顺序来获取锁。比如,同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。而非公平锁则无法保证锁的获取是按照请求锁的顺序进行的,这样就可能导致某个或者一些线程永远获取不到锁。

在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。而对于ReentrantLock 和 ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。

看下面两个例子:

Case : 公平锁

public class RunFair {
    public static void main(String[] args) throws InterruptedException {
        final Service service = new Service(true);     // 公平锁,设为 true
        Runnable runnable = new Runnable() {
            @Override             public void run() {
                System.out.println("线程" + Thread.currentThread().getName()
                        + "运行了");
                service.serviceMethod();
            }
        };

        Thread[] threadArray = new Thread[10];
        for (int i = 0; i < 10; i++) 
            threadArray[i] = new Thread(runnable);

        for (int i = 0; i < 10; i++) 
            threadArray[i].start(); 
    }
}
class Service {
    private ReentrantLock lock;
    public Service(boolean isFair) {
        super();
        lock = new ReentrantLock(isFair);
    }
    public void serviceMethod() {
        try {
            lock.lock();
            System.out.println("ThreadName=" + Thread.currentThread().getName()
                    + "获得锁定");
        } finally {
            lock.unlock();
        }
    }
}/* Output:          线程Thread-0运行了         线程Thread-1运行了         ThreadName=Thread-1获得锁定         ThreadName=Thread-0获得锁定         线程Thread-2运行了         ThreadName=Thread-2获得锁定         线程Thread-3运行了         线程Thread-4运行了         ThreadName=Thread-4获得锁定         线程Thread-5运行了         ThreadName=Thread-5获得锁定         ThreadName=Thread-3获得锁定         线程Thread-6运行了         线程Thread-7运行了         ThreadName=Thread-6获得锁定         线程Thread-8运行了         线程Thread-9运行了         ThreadName=Thread-7获得锁定         ThreadName=Thread-8获得锁定         ThreadName=Thread-9获得锁定 *///:~

Case: 非公平锁

public class RunFair {
    public static void main(String[] args) throws InterruptedException {
        final Service service = new Service(false);  // 非公平锁,设为 false
        ...
}/* Output:          线程Thread-0运行了         ThreadName=Thread-0获得锁定         线程Thread-2运行了         ThreadName=Thread-2获得锁定         线程Thread-6运行了         线程Thread-1运行了         ThreadName=Thread-6获得锁定         线程Thread-3运行了         ThreadName=Thread-3获得锁定         线程Thread-7运行了         ThreadName=Thread-7获得锁定         线程Thread-4运行了         ThreadName=Thread-4获得锁定         线程Thread-5运行了         ThreadName=Thread-5获得锁定         线程Thread-8运行了         ThreadName=Thread-8获得锁定         线程Thread-9运行了         ThreadName=Thread-9获得锁定         ThreadName=Thread-1获得锁定 *///:~

根据上面代码演示结果我们可以看出(线程数越多越明显),在公平锁案例下,多个线程在等待一个锁时,一般而言,等待时间最久的线程(最先请求的线程)会获得该锁。而在非公平锁例下,则无法保证锁的获取是按照请求锁的顺序进行的。

另外, 在ReentrantLock类中定义了很多方法,举几个例子:

  • isFair() //判断锁是否是公平锁
  • isLocked() //判断锁是否被任何线程获取了
  • isHeldByCurrentThread() //判断锁是否被当前线程获取了
  • hasQueuedThreads() //判断是否有线程在等待该锁
  • getHoldCount() //查询当前线程占有lock锁的次数
  • getQueueLength() // 获取正在等待此锁的线程数
  • getWaitQueueLength(Condition condition) // 获取正在等待此锁相关条件condition的线程数在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。不过要记住,ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。

4.读写锁

读写锁将对临界资源的访问分成了两个锁,一个读锁和一个写锁。正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。可以通过readLock()获取读锁,通过writeLock()获取写锁。上一节已经演示过了读写锁的使用方法,在此不再赘述。


来源:51CTO

相关文章
|
15天前
|
监控 JavaScript 前端开发
《理解 WebSocket:Java Web 开发的实时通信技术》
【4月更文挑战第4天】WebSocket是Java Web实时通信的关键技术,提供双向持久连接,实现低延迟、高效率的实时交互。适用于聊天应用、在线游戏、数据监控和即时通知。开发涉及服务器端实现、客户端连接及数据协议定义,注意安全、错误处理、性能和兼容性。随着实时应用需求增加,WebSocket在Java Web开发中的地位将更加重要。
|
1天前
|
人工智能 前端开发 Java
Java语言开发的AI智慧导诊系统源码springboot+redis 3D互联网智导诊系统源码
智慧导诊解决盲目就诊问题,减轻分诊工作压力。降低挂错号比例,优化就诊流程,有效提高线上线下医疗机构接诊效率。可通过人体画像选择症状部位,了解对应病症信息和推荐就医科室。
26 10
|
1天前
|
Java 关系型数据库 MySQL
一套java+ spring boot与vue+ mysql技术开发的UWB高精度工厂人员定位全套系统源码有应用案例
UWB (ULTRA WIDE BAND, UWB) 技术是一种无线载波通讯技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。一套UWB精确定位系统,最高定位精度可达10cm,具有高精度,高动态,高容量,低功耗的应用。
一套java+ spring boot与vue+ mysql技术开发的UWB高精度工厂人员定位全套系统源码有应用案例
|
2天前
|
Java 开发者
Java中多线程并发控制的实现与优化
【4月更文挑战第17天】 在现代软件开发中,多线程编程已成为提升应用性能和响应能力的关键手段。特别是在Java语言中,由于其平台无关性和强大的运行时环境,多线程技术的应用尤为广泛。本文将深入探讨Java多线程的并发控制机制,包括基本的同步方法、死锁问题以及高级并发工具如java.util.concurrent包的使用。通过分析多线程环境下的竞态条件、资源争夺和线程协调问题,我们提出了一系列实现和优化策略,旨在帮助开发者构建更加健壮、高效的多线程应用。
2 0
|
3天前
|
存储 缓存 安全
Java并发基础之互斥同步、非阻塞同步、指令重排与volatile
在Java中,多线程编程常常涉及到共享数据的访问,这时候就需要考虑线程安全问题。Java提供了多种机制来实现线程安全,其中包括互斥同步(Mutex Synchronization)、非阻塞同步(Non-blocking Synchronization)、以及volatile关键字等。 互斥同步(Mutex Synchronization) 互斥同步是一种基本的同步手段,它要求在任何时刻,只有一个线程可以执行某个方法或某个代码块,其他线程必须等待。Java中的synchronized关键字就是实现互斥同步的常用手段。当一个线程进入一个synchronized方法或代码块时,它需要先获得锁,如果
21 0
|
4天前
|
Java 大数据 云计算
Spring框架:Java后台开发的核心
【4月更文挑战第15天】Spring框架在Java后台开发中占据核心位置,因其控制反转(IoC)、面向切面编程(AOP)、事务管理等特性提升效率和质量。Spring提供数据访问集成、RESTful Web服务和WebSocket支持。优势包括高效开发、灵活扩展、强大生态圈和广泛应用。应用于企业级应用、微服务架构及云计算大数据场景。掌握Spring对Java开发者至关重要。
|
7天前
|
存储 Java 编译器
Java集合丛林:深入了解集合框架的秘密
Java集合丛林:深入了解集合框架的秘密
11 0
Java集合丛林:深入了解集合框架的秘密
|
8天前
|
运维 NoSQL 算法
Java开发-深入理解Redis Cluster的工作原理
综上所述,Redis Cluster通过数据分片、节点发现、主从复制、数据迁移、故障检测和客户端路由等机制,实现了一个分布式的、高可用的Redis解决方案。它允许数据分布在多个节点上,提供了自动故障转移和读写分离的功能,适用于需要大规模、高性能、高可用性的应用场景。
15 0
|
10天前
|
人工智能 小程序 Java
JAVA开发智慧学校系统源码+人脸电子班牌布局
智慧校园是通过利用物联网,大数据技术来改变师生和校园资源相互交互的方式,以便提高交互的明确性、灵活性和响应速度,从而实现智慧化服务和管理的校园模式。
|
10天前
|
存储 Java 数据库连接
java使用mp持久化框架,写入5000个字符,但是VARCHAR(255) 会报错
使用Java的MyBatis Plus框架时,如果尝试将超过VARCHAR(255)限制的字符串(如5000个字符)存入数据库,会抛出异常。解决方法是将列类型改为TEXT。可通过在实体类属性上添加`@TableField(typeHandler = JdbcType.CLOB)`注解,如`private String content;`,将属性映射到CLOB类型列,以存储更长字符串。
9 0