大数据营销的下一步

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

如果说奥巴马当年的连任证明了大数据的威力,那么特朗普的当选则戳破了当前大数据的短板。

2012年11月,奥巴马击败罗姆尼再次当选美国总统。其背后的功臣是奥巴马的数据挖掘团队,他们一直在搜集、分析和储存庞大的数据,从而为他制定了精准的广告购买决策,比罗姆尼少花了1亿美金的竞选资金。显然,大数据通过过程可视化达到了更为精准的营销。

大数据营销的下一步

但是,2016年12月,特朗普的当选却给了大数据一记重击。微软Bing以及有“数据巫师”之称的美国统计学家纳特·西尔弗(Nate Silver)通通预测失败,尽管拥有大数据意义上的高胜率,希拉里仍然在现实中败北。

是大数据根本不足以被采信,还是它到达了一个亟待升级的转捩点?

大数据的作用在于寻找规律

在互联网和大数据出现之前,我们通过经验来判断事务并采取行动。而经验在本质上,就是过去所积累的全部大数据在人脑中的反映。

受益于计算机的发明,我们对于数据的处理能力越来越强,处理速度也越来越快;紧接着,互联网的出现通过打破空间藩篱而提高了时间的利用率,我们对数据的搜索和收集变得无远弗届,数据广度与深度呈现裂变式增长。

这两大技术的发展将带来哪些变化?

基于过去大数据收集与处理的下一步,就是帮助判断和预测未来,从而促进当下的行动。在这方面最典型的例子就是Google。作为全球最大搜索引擎,Google拥有以太级别的数据和遍布全球的36个数据中心。比如:Google趋势图应用可以通过用户对于搜索词的关注度,很快发现和理解社会上的热点趋势。而Google Instant则会在用户输入关键词的过程中,迅速预测可能的搜索结果。据称,大数据为谷歌每天带来近2300万美元的收入。

那么,对于营销来说,大数据的价值又如何体现?

商业环境受制于诸多不可控的外部因素,宏观方面比如政策、经济大环境、社会文化等,微观层面则涉及行业走向、竞争对手、潜在替代者、消费者需求甚至企业内部管理等各方面。因此,商业对于大数据的依赖性更强。商业互联网化之后,提出的第一个口号就是 Data Drive Business(数据驱动商业)。

就营销这一细分领域来说,大数据的价值更为明显。比如:如何发现消费者需求?如何圈定准确的目标受众?如何在正确的时间、正确的地点、以正确的方式传达给正确的消费者正确的内容?如何促使消费者行动?如何以销定产并实现柔性生产?如何设计制造最具市场潜力的产品?如何提高营销的效率和投入产出比?……

要回答这些问题,就必须对涉及营销的整个过程甚至外部环境,都要有全面和透彻的了解。而大数据的作用就在于:通过结构化和非结构化的数据收集,将以往不可见不可描述的部分,变得可视化,从而通过分析处理来寻找规律、预测未来、帮助判断和采取行动。

毫无疑问,大数据的价值显而易见。但是,要想充分发挥大数据的威力,要做到两方面的极致化:“对更加垂直化、细分化的小数据的纵深挖掘”以及“对更加广泛、甚至转瞬即逝的整体样本的全面覆盖”。

对更加垂直化、细分化的小数据的纵深挖掘

罗辑思维创始人罗振宇曾经说过这样一句话:“ 共享经济这件事其实遮盖了人类经济发展的总趋势。这个总趋势是不可逆的,叫分工再合作。”

技术的发展带动分工的细化,而分工的细化保证了每个环节的专业化。精细化分工如同一个个齿轮,带动整个机器不断自我进化。

在互联网领域也同样如此。跑马圈地的草莽时代在2016年渐渐谢幕,地推、并购等粗放增长方式呈现乏力迹象,互联网公司开始专心打磨产品,向纵深的垂直化和精细化运营进化。

各细分领域开始出现新的独角兽,比如一些小而美的app:美食生活类app Enjoy、精品短视频app Eyepetizer等,都拥有了一批忠实粉丝。

此外,诸如BAT这样的大平台也开始了精细化、垂直化的探索。而他们的追赶者们也在垂直化的路上走得更远一些。例如搜狗,除了常规的图片、视频、音乐等垂直搜索之外,搜狗结合自身技术特点,先后与腾讯、知乎、微软、丁香园等展开合作,推出微信搜索、知乎搜索、英文搜索、学术搜索、明医搜索等更加精细化、差异化的独家特色搜索产品,通过满足不同需求,增强用户黏性。

在垂直领域的深挖,使搜狗创造了一系列差异化、垂直化的产品,聚拢了拥有差异化需求的用户群体,根据这些用户在垂直产品上的多方网络行为,建立了行业标签、商业标签、人群属性标签、地理位置标签等完整的一套标签体系,进而提高大数据营销的精准度,帮助企业进行更加精准的投放。

对更加广泛、甚至转瞬即逝的整体样本的全面覆盖

目前,几乎所有大数据营销产品和服务都是基于数据集市(data mart)的概念。简单来说,它基于某一需求,定向搜集相关数据构成大数据样本库。好处是目的和方向比较明确,如同一个人先产生问题再去寻求答案一样;但缺点在于,这种收集方式会在前期遗漏部分有价值的数据,或者忽视掉一些转瞬即逝的数据——正因为目标明确,反而只见树木不见森林。

举个例子:如果利用大数据来进行用户画像,这就产生了一大问题:先入为主的定向切入,使用于用户画像的数据并不完善,从而会影响到分析的精度,进一步误导营销决策。

在特朗普大数据民调失误这一案例中,分析师就是在希拉里必胜新闻的刺激下,错估了形势,预设立场,通过先入为主的定向切入,忽视了特朗普在佛罗里达和其他摇摆州的巨大领先优势,从而在数据搜集上有意无意地遗漏了一些重要数据。大数据的蝴蝶在收集端挥了挥翅膀,结论端差之毫厘谬以千里。

正是因为注意到了这一问题,现在业内开始有人重新提起数据湖泊(data lake)的概念。

数据湖泊最先出现在2011年Forbes杂志James Dixon所写的《大数据需要一个大的新型架构》一文中。与目标明确的数据集市不同,数据湖泊带来了更大的弹性。

简单地讲,数据湖泊倡导存储每一个可能有用的细节数据,把忽视的、遗漏的数据重新挖掘和存储起来,当需要时再进行一站式统一的、交叉的分析。这样做的好处是不遗漏任何有价值的数据,即使它非常微小、转瞬即逝、或当时看起来没有价值。

比如:在之前的大数据采集中,可能会漏掉潜在消费群的信息,忽略掉可能的销售机会。而尽可能采集更多更全面(哪怕是看起来不相关的数据,也可能内部存在一定的关联)的大数据,则有利于企业制定更精准的营销策略。

因此,数据湖泊的成立有赖于两个维度的拓展:上一节提到的垂直纵深数据的收集,以及更为广泛的全域数据的收集。

举个比较微观的例子:欧洲某大银行每年有650个直邮营销推广项目,发放将近6,000万封电子直邮,但是他们的营销效率却逐年下降。这家银行发现问题在于:虽然公司有不同的渠道接触客户,但是每个渠道都有自己的客户接触策略,这就造成客户资料和历史数据信息分散,没有形成客户关系的全貌。全域数据的缺失,使得公司无法根据客户特性来制定更为精准的个性化营销方案。

如今,媒介碎片化和人群移动化的趋势,使收集全域数据面临着新的挑战:如何收集移动数据?如何实现跨屏数据打通?如何搜集更多形式各异的非结构化数据?

对于第一个问题,目前的解决方案一般是尽最大可能覆盖更多的移动流量入口。再以搜狗搜索为例,不仅拥有移动端的QQ浏览器、搜狗浏览器、腾讯网、搜狐网等强势入口,2016年搜狗还与华为、三星、OPPO等大部分主流手机厂商达成合作。据悉,每天有超2亿台手机默认使用搜狗搜索。

在移动时代,人们不光在行为上呈现碎片化的特征,使用的设备也日趋丰富多元,这就带来了第二个问题:跨屏数据的收集。搜狗的无线端和PC端可以依托搜狗自有帐号体系、合作伙伴数据以及第三方数据,实现跨屏打通,进行无缝数据跟踪,在场景上将用户搜索、浏览和输入的跨屏数据进行融合,提供更有价值的投放依据。

目前,即使在非结构化数据的搜集上,也仅仅局限在文字、图片等简单表现形式上,但搜狗对于数据的搜集还跨越到了语音领域。2016年7月,搜狗推出知音引擎,不仅可以搜集语音数据,还可以进行理解和思考,进而提高语音识别准确率,再次丰富了数据搜集的类型。

更加细分的垂直化数据+跨屏多元化的全域数据,在源头上确保了数据的准确与全面;同时,借助人工智能日益增强的计算和分析能力,大数据将为企业决策提供更为精准的指引,使营销步入真正的智能时代。


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
26天前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
|
4月前
|
自然语言处理 供应链 数据可视化
大数据在市场营销中的应用案例:精准洞察,驱动增长
【8月更文挑战第25天】大数据在市场营销中的应用案例不胜枚举,它们共同展示了大数据技术在精准营销、市场预测、用户行为分析等方面的巨大潜力。通过深度挖掘和分析数据,企业能够更加精准地洞察市场需求,优化营销策略,提升市场竞争力。未来,随着大数据技术的不断发展和普及,其在市场营销领域的应用将更加广泛和深入。
1252 3
|
4月前
|
人工智能 分布式计算 架构师
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
|
6月前
|
机器学习/深度学习 分布式计算 搜索推荐
运用大数据分析提升返利App的市场营销效果
运用大数据分析提升返利App的市场营销效果
|
7月前
|
人工智能 搜索推荐 大数据
如何利用大数据进行智能化营销?
【5月更文挑战第14天】如何利用大数据进行智能化营销?
89 0
|
7月前
|
数据可视化 大数据 数据挖掘
瓴羊荣获2023虎啸奖“年度十大AI&大数据服务公司”“数智营销案例铜奖”双重大奖
瓴羊荣获2023虎啸奖“年度十大AI&大数据服务公司”“数智营销案例铜奖”双重大奖
114 0
|
新零售 存储 供应链
案例酷 | 九阳股份:小家电,大数据,精准营销圈粉新生代
编者按: 在数字经济蓬勃发展的当下,千行百业都在紧抓时代机遇转型升级。在小家电领域,数智化转型成为家电行业的热词,家电业的头部企业也纷纷走上数智化“花路”。其中,作为小家电领导品牌之一,九阳从单品类起家,通过一路披荆斩棘,不断超越自己走到小家电领先地位,秉承健康和创新的核心DNA,九阳积极引领厨房小家电升级换代,创新营销玩法,推动数智化转型,品牌转型取得明显成效。 全文约4812字,建议阅读时间14分钟。
385 0
|
2月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
14天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
109 7
|
14天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
30 2