Go语言中HTTP Server:
HTTP server,顾名思义,支持http协议的服务器,HTTP是一个简单的请求-响应协议,通常运行在TCP之上。通过客户端发送请求给服务器得到对应的响应。
HTTP服务简单实现
- package main
- import (
- "fmt"
- "net/http"
- )
- //③处理请求,返回结果
- func Hello(w http.ResponseWriter, r *http.Request) {
- fmt.Fprintln(w, "hello world")
- }
- func main() {
- //①路由注册
- http.HandleFunc("/", Hello)
- //②服务监听
- http.ListenAndServe(":8080", nil)
- }
你以为这样就结束了吗,不才刚刚开始。
源码分析
①路由注册
- func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
- DefaultServeMux.HandleFunc(pattern, handler)
- }
DefaultServeMux是什么?
DefaultServeMux是ServeMux的一个实例。
ServeMux又是什么?
- // DefaultServeMux is the default ServeMux used by Serve.
- var DefaultServeMux = &defaultServeMux
- var defaultServeMux ServeMux
- type ServeMux struct {
- mu sync.RWMutex
- m map[string]muxEntry
- hosts bool
- }
- type muxEntry struct {
- explicit bool
- h Handler
- pattern string
- }
ServeMux主要通过map[string]muxEntry,来存储了具体的url模式和handler(此handler是实现Handler接口的类型)。通过实现Handler的ServeHTTP方法,来匹配路由(这一点下面源码会讲到)
很多地方都涉及到了Handler,那么Handler是什么?
- type Handler interface {
- ServeHTTP(ResponseWriter, *Request)
- }
此接口可以算是HTTP Server一个枢纽
- func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
- mux.Handle(pattern, HandlerFunc(handler))
- }
- type HandlerFunc func(ResponseWriter, *Request)
- func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
- f(w, r)
- }
从代码中可以看出HandlerFunc是一个函数类型,并实现了Handler接口。当通过调用HandleFunc(),把Hello强转为HandlerFunc类型时,就意味着 Hello函数也实现ServeHTTP方法。
ServeMux的Handle方法:
- func (mux *ServeMux) Handle(pattern string, handler Handler) {
- mux.mu.Lock()
- defer mux.mu.Unlock()
- if pattern == "" {
- panic("http: invalid pattern " + pattern)
- }
- if handler == nil {
- panic("http: nil handler")
- }
- if mux.m[pattern].explicit {
- panic("http: multiple registrations for " + pattern)
- }
- if mux.m == nil {
- mux.m = make(map[string]muxEntry)
- }
- //把handler和pattern模式绑定到
- //map[string]muxEntry的map上
- mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
- if pattern[0] != '/' {
- mux.hosts = true
- }
- //这里是绑定静态目录,不作为本片重点。
- n := len(pattern)
- if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
- path := pattern
- if pattern[0] != '/' {
- path = pattern[strings.Index(pattern, "/"):]
- }
- url := &url.URL{Path: path}
- mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(), StatusMovedPermanently), pattern: pattern}
- }
- }
上面的流程就完成了路由注册。
②服务监听
- type Server struct {
- Addr string
- Handler Handler
- ReadTimeout time.Duration
- WriteTimeout time.Duration
- TLSConfig *tls.Config
- MaxHeaderBytes int
- TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
- ConnState func(net.Conn, ConnState)
- ErrorLog *log.Logger
- disableKeepAlives int32 nextProtoOnce sync.Once
- nextProtoErr error
- }
- func ListenAndServe(addr string, handler Handler) error {
- server := &Server{Addr: addr, Handler: handler}
- return server.ListenAndServe()
- }
- //初始化监听地址Addr,同时调用Listen方法设置监听。
- //最后将监听的TCP对象传入Serve方法:
- func (srv *Server) ListenAndServe() error {
- addr := srv.Addr
- if addr == "" {
- addr = ":http"
- }
- ln, err := net.Listen("tcp", addr)
- if err != nil {
- return err
- }
- return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
- }
Serve(l net.Listener)为每个请求开启goroutine的设计,保证了go的高并发。
- func (srv *Server) Serve(l net.Listener) error {
- defer l.Close()
- if fn := testHookServerServe; fn != nil {
- fn(srv, l)
- }
- var tempDelay time.Duration // how long to sleep on accept failure
- if err := srv.setupHTTP2_Serve(); err != nil {
- return err
- }
- srv.trackListener(l, true)
- defer srv.trackListener(l, false)
- baseCtx := context.Background() // base is always background, per Issue 16220
- ctx := context.WithValue(baseCtx, ServerContextKey, srv)
- ctx = context.WithValue(ctx, LocalAddrContextKey, l.Addr())
- //开启循环进行监听
- for {
- //通过Listener的Accept方法用来获取连接数据
- rw, e := l.Accept()
- if e != nil {
- select {
- case <-srv.getDoneChan():
- return ErrServerClosed
- default:
- }
- if ne, ok := e.(net.Error); ok && ne.Temporary() {
- if tempDelay == 0 {
- tempDelay = 5 * time.Millisecond
- } else {
- tempDelay *= 2
- }
- if max := 1 * time.Second; tempDelay > max {
- tempDelay = max
- }
- srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
- time.Sleep(tempDelay)
- continue
- }
- return e
- }
- tempDelay = 0
- //通过获得的连接数据,创建newConn连接对象
- c := srv.newConn(rw)
- c.setState(c.rwc, StateNew) // before Serve can return
- //开启goroutine发送连接请求
- go c.serve(ctx)
- }
- }
serve()为核心,读取对应的连接数据进行分配
- func (c *conn) serve(ctx context.Context) {
- c.remoteAddr = c.rwc.RemoteAddr().String()
- //连接关闭相关的处理
- defer func() {
- if err := recover(); err != nil && err != ErrAbortHandler {
- const size = 64 << 10
- buf := make([]byte, size)
- buf = buf[:runtime.Stack(buf, false)]
- c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
- }
- if !c.hijacked() {
- c.close()
- c.setState(c.rwc, StateClosed)
- }
- }()
- .....
- ctx, cancelCtx := context.WithCancel(ctx)
- c.cancelCtx = cancelCtx
- defer cancelCtx()
- c.r = &connReader{conn: c}
- c.bufr = newBufioReader(c.r)
- c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
- for {
- //读取客户端的请求
- w, err := c.readRequest(ctx)
- if c.r.remain != c.server.initialReadLimitSize() {
- // If we read any bytes off the wire, we're active.
- c.setState(c.rwc, StateActive)
- }
- .................
- //处理网络数据的状态
- // Expect 100 Continue support
- req := w.req
- if req.expectsContinue() {
- if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
- // Wrap the Body reader with one that replies on the connection
- req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
- }
- } else if req.Header.get("Expect") != "" {
- w.sendExpectationFailed()
- return
- }
- c.curReq.Store(w)
- if requestBodyRemains(req.Body) {
- registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
- } else {
- if w.conn.bufr.Buffered() > 0 {
- w.conn.r.closeNotifyFromPipelinedRequest()
- }
- w.conn.r.startBackgroundRead()
- }
- //调用serverHandler{c.server}.ServeHTTP(w, w.req)
- //方法处理请求
- serverHandler{c.server}.ServeHTTP(w, w.req)
- w.cancelCtx()
- if c.hijacked() {
- return
- }
- w.finishRequest()
- if !w.shouldReuseConnection() {
- if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
- c.closeWriteAndWait()
- }
- return
- }
- c.setState(c.rwc, StateIdle)
- c.curReq.Store((*response)(nil))
- if !w.conn.server.doKeepAlives() {
- return
- }
- if d := c.server.idleTimeout(); d != 0 {
- c.rwc.SetReadDeadline(time.Now().Add(d))
- if _, err := c.bufr.Peek(4); err != nil {
- return
- }
- }
- c.rwc.SetReadDeadline(time.Time{})
- }
- }
③处理请求,返回结果
serverHandler 主要初始化路由多路复用器。如果server对象没有指定Handler,则使用默认的DefaultServeMux作为路由多路复用器。并调用初始化Handler的ServeHTTP方法。
- type serverHandler struct {
- srv *Server
- }
- func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
- handler := sh.srv.Handler
- if handler == nil {
- handler = DefaultServeMux
- }
- if req.RequestURI == "*" && req.Method == "OPTIONS" {
- handler = globalOptionsHandler{}
- }
- handler.ServeHTTP(rw, req)
- }
这里就是之前提到的匹配路由的具体代码
- func (mux *ServeMux) ServeHTTP (w ResponseWriter, r *Request) {
- if r.RequestURI == "*" {
- if r.ProtoAtLeast(1, 1) {
- w.Header().Set("Connection", "close")
- }
- w.WriteHeader(StatusBadRequest)
- return
- }
- //匹配注册到路由上的handler函数
- h, _ := mux.Handler(r)
- //调用handler函数的ServeHTTP方法
- //即Hello函数,然后把数据写到http.ResponseWriter
- //对象中返回给客户端。
- h.ServeHTTP(w, r)
- }
- func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
- if r.Method != "CONNECT" {
- if p := cleanPath(r.URL.Path); p != r.URL.Path {
- _, pattern = mux.handler(r.Host, p)
- url := *r.URL
- url.Path = p
- return RedirectHandler(url.String(), StatusMovedPermanently), pattern
- }
- }
- return mux.handler(r.Host, r.URL.Path)
- }
- func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
- mux.mu.RLock()
- defer mux.mu.RUnlock()
- // Host-specific pattern takes precedence over generic ones
- if mux.hosts {
- //如 127.0.0.1/hello
- h, pattern = mux.match(host + path)
- }
- if h == nil {
- // 如 /hello
- h, pattern = mux.match(path)
- }
- if h == nil {
- h, pattern = NotFoundHandler(), ""
- }
- return
- }
- func (mux *ServeMux) match(path string) (h Handler, pattern string) {
- var n = 0
- for k, v := range mux.m {
- if !pathMatch(k, path) {
- continue
- }
- //通过迭代m寻找出注册路由的patten模式
- //与实际url匹配的handler函数并返回。
- if h == nil || len(k) > n {
- n = len(k)
- h = v.h
- pattern = v.pattern
- }
- }
- return
- }
- func pathMatch(pattern, path string) bool {
- if len(pattern) == 0 {
- // should not happen
- return false
- }
- n := len(pattern)
- //如果注册模式与请求uri一样返回true,否则false
- if pattern[n-1] != '/' {
- return pattern == path
- }
- //静态文件匹配
- return len(path) >= n && path[0:n] == pattern
- }
将数据写给客户端
- //主要代码,通过层层封装才走到这一步
- func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
- n, err = w.c.rwc.Write(p)
- if err != nil && w.c.werr == nil {
- w.c.werr = err
- w.c.cancelCtx()
- }
- return
- }
serverHandler{c.server}.ServeHTTP(w, w.req)当请求结束后,就开始执行连接断开的相关逻辑。
总结
Go语言通过一个ServeMux实现了的路由多路复用器来管理路由。同时提供一个Handler接口提供ServeHTTP方法,实现handler接口的函数,可以处理实际request并返回response。
ServeMux和handler函数的连接桥梁就是Handler接口。ServeMux的ServeHTTP方法实现了寻找注册路由的handler的函数,并调用该handler的ServeHTTP方法。
所以说Handler接口是一个重要枢纽。
简单梳理下整个请求响应过程,如下图
作者:佚名
来源:51CTO