Qunar用户画像构建策略及应用实践

简介:

1.用户画像的构建原则

我们做用户画像的目的有两个:

  1. 必须从业务场景出发,解决实际的业务问题,之所以进行用户画像要么是获取新用户,或者是提升用户体验,或者是挽回流失用户等有明确的业务目标 。
  2. 根据用户画像的信息做产品设计,必须要清楚知道用户长什么样子,有什么行为特征和属性,这样才能为用户设计产品或开展营销活动。

一般常见的错误想法是画像维度的数据越多越好,画像数据越丰富越好,费了很大的力气进行画像后,却发现只剩下了用户画像,和业务相差甚远,没有办法直接支持业务运营,投入精力巨大但是回报微小,可以说得不偿失。鉴于此,我们的画像的维度和设计原则都是紧紧跟着业务需求去推动。

2.用户画像数据仓库构建

2.1 数据源的集成

目前Qunar用户画像数据仓库中的数据源来自业务数据库的数据和用户行为日志数据,目前数据仓库中基本涵盖了机票、酒店、火车票以及保险等业务系统的数据,可以从全方位的了解去哪儿的一个用户的画像。

2.2 我们有哪些数据?-数据维度

2.3 我们有哪些数据?-数据仓库

目前我们画像数据仓库的构建都是基于Qunar基础数据仓库进行构建,并按照维度进行划分。

目前数据仓库中包括的信息如下:

  • 画像数据仓库表20个
  • 画像数据仓库
  • 国内、国际 2年+数据
  • 标签数据
  • 每日增量

–基本数据

–业务数据

–搜索

–Booking

2.4 用户唯一标识设计

用户唯一标识是整个用户画像的核心,它把从用户开始使用app到下单到售后整个所有的用户行为轨迹进行关联,可以更好的去跟踪和描绘一个用户的特征。

2.5 ETL过程设计-调度系统

  • 依赖数据平台调度系统
  • 定时触发和Job依赖触发两种模式 

2.6 ETL过程设计-任务执行

  • ETL的过程主要是将数据源的清洗到数据仓库表的过程(每天更新增量)
  • Summary表的处理逻辑(每天更新全量)
  • 标签库的处理(每周更新,2年全量)

2.7 用户主题分析及数据挖掘

有了丰富的画像数据后,产品和运营人员可以根据用户主题进行数据分析和数据挖掘相关的工作。用户主题Cube的定义如下:

  • Measure:

–订单数量

–订单金额

–搜索次数

–Booking次数

  • Dimension:

–下单时间

–出发时间

–航司信息

–舱位信息

–航班(出发地、目的地)

–基本信息(年龄、性别等自然属性)

3.用户画像标签构建策略

3.1用户标签特征属性

用户的特征属性可以是事实的,也可以是抽象的;可以是自然属性,比如性别,年龄,星座等,可以是社会属性,比如职业,社交,出生地等;还可以是财富状况,比如是否高收入人群,是否有豪车豪宅等固定资产,对于机票用户来讲位置特征也是比较重要的属性,比常驻地,常出差地,老家等。这些属性都可以清楚的描绘一个用户的画像特征。

  • 画像标签一般根据公司的业务体系来设计,存储有HDFS,HBASE,ES
  • 标签的更新频率:每日更新,每周、每月更新
  • 标签的生命周期:有的数据随时间衰减迭代

3.2用户标签分类及特征项

提到用户画像就不得不提到一个词“标签”。标签是表达人的基本属性、行为倾向、兴趣偏好等某一个维度的数据标识,它是一种相关性很强的关键字,可以简洁的描述和分类人群。标签的定义来源于业务目标,基于不同的行业,不同的应用场景,同样的标签名称可能代表了不同的含义,也决定了不同的模型设计和数据处理方式。我们给机票用户画像打标签分类为两大类,基础类标签和个性化标签,这些标签可以有重复,但是都是通过不同的角度去定义和刻画一个用户,来满足不同的业务营销需求。

3.3用户标签库构建流程

4.用户画像技术架构

4.1 技术架构

4.2 实施方法论

5.用户画像数据应用实践

5.1 用户群体特征分析

  • 设计目标

–根据条件可选项,输出筛选用户群体

–图形展示用户群体属性特征

应用场景

–如果筛选的用户群组满足业务的要求,将筛选条件形成参数

–根据参数提供接口查询

 

5.2 客户行为预测

客户行为预测建立步骤

  • 建模数据准备
  • 客户流失节点判断
  • 模型应用变量确定
  • 模型构建
  • 模型应用
  • 模型验证 

可以对用户流失做及时预测指导建议用户维系运营。

5.3 数据和业务在一起

用户画像与业务产品互相依赖,相辅相成

  • 用户画像标签库丰富优化
  • 快速提供数据服务
  • 数据分析+机器学习+模型训练 

6.总结

用户画像作为大数据的根基,它完美的描述了一个用户的信息全貌,为进一步精准、快速的分析用户行为、消费等重要信息,用户画像仓库同时也提供了足够的数据基础,让我们Qunar更好的为用户提供高价值的服务,满足用户智慧出行的需要。


本文作者:李国芳

来源:51CTO

相关文章
|
7月前
|
搜索推荐 数据可视化 数据挖掘
构建精准的目标客户群用户画像构建
构建精准的目标客户群用户画像
541 6
|
存储 SQL 机器学习/深度学习
用户画像标签体系——从零开始搭建实时用户画像(三)
用户画像标签体系——从零开始搭建实时用户画像(三)
2718 0
用户画像标签体系——从零开始搭建实时用户画像(三)
|
5天前
|
数据采集 监控 搜索推荐
用户画像构建:年度数据分析的用户视角
在数据驱动的时代,年度数据分析对企业战略规划和运营优化至关重要。本文从数据收集、预处理、分析、可视化到应用实践,全面探讨如何通过年度数据分析实现业务增长,助力企业精准决策。通过构建全面的数据源体系、清洗整合数据、洞察趋势、发现机会,并借助数据可视化工具,最终将数据转化为实际行动,持续优化企业运营。
|
5月前
|
数据采集 机器学习/深度学习 SQL
如何构建高效的数据分析流程:从技术视角出发
【7月更文挑战第22天】构建高效的数据分析流程是一个持续迭代的过程,需要技术团队与业务团队的紧密合作。通过不断优化流程,企业可以更加高效地利用数据资源,为业务决策提供有力支持。
|
4月前
|
机器学习/深度学习 数据采集 分布式计算
构建一个高效的机器学习工作流:技术实践与优化策略
【8月更文挑战第12天】构建一个高效的机器学习工作流是一个复杂而持续的过程,需要综合考虑数据、模型、算法、平台等多个方面。通过遵循上述步骤和优化策略,可以显著提高机器学习项目的开发效率和质量,为业务带来更大的价值。未来,随着技术的不断进步和应用场景的不断拓展,我们有理由相信机器学习工作流将变得更加高效、智能和灵活。
|
6月前
|
安全 前端开发 数据挖掘
电子商务平台的构建与优化:技术与策略的深度融合
【6月更文挑战第23天】构建电子商务平台涉及需求分析、技术选型、架构设计、功能实现及测试部署,而优化则聚焦用户体验、性能、安全和SEO。用户体验优化包括界面布局和交互设计,性能优化涉及代码和数据库优化,安全优化需保障数据传输和防御网络攻击。SEO和移动端优化提升可见性和便捷性,数据分析驱动策略调整,以增强平台竞争力。
|
7月前
|
数据采集 供应链 安全
利用大数据优化业务流程:策略与实践
【5月更文挑战第11天】本文探讨了利用大数据优化业务流程的策略与实践,包括明确业务目标、构建大数据平台、数据采集整合、分析挖掘及流程优化。通过实例展示了电商和制造企业如何利用大数据改进库存管理和生产流程,提高效率与客户满意度。随着大数据技术进步,其在业务流程优化中的应用将更加广泛和深入,企业需积极采纳以适应市场和客户需求。
|
数据采集 存储 大数据
遵循4个构建数据架构的原则将加速企业数据策略实现
数据架构的好坏取决于它的基本原则。如果没有正确的目的、标准和通用的语言,企业的策略很难付诸实施。
遵循4个构建数据架构的原则将加速企业数据策略实现
|
存储 分布式计算 算法
推荐引擎-如何创建推荐业务|学习笔记
快速学习推荐引擎-如何创建推荐业务|学习笔记
推荐引擎-如何创建推荐业务|学习笔记
|
搜索推荐 算法 数据挖掘
如何做好用户画像?
用户画像是指我们产品或服务的核心用户具有代表性的一些共性特征。它是一个虚拟的用户,画出这些特征的目的有两个 1、指引我们更有效率地找到具有这部分共性的人。 2、快速的定位这些具有共性特征用户的需求。
307 0
如何做好用户画像?
下一篇
DataWorks