关于大数据采集平台架构分析的简述

简介:

随着大数据越来越被重视,数据采集的挑战变的尤为突出。今天为大家介绍几款数据采集平台:

  • Apache Flume
  • Fluentd
  • Logstash
  • Chukwa
  • Scribe
  • Splunk Forwarder

大数据平台与数据采集

任何完整的大数据平台,一般包括以下的几个过程:

  • 数据采集
  • 数据存储
  • 数据处理
  • 数据展现(可视化,报表和监控)

大数据构架

其中,数据采集是所有数据系统必不可少的,随着大数据越来越被重视,数据采集的挑战也变的尤为突出。这其中包括:

  • 数据源多种多样
  • 数据量大,变化快
  • 如何保证数据采集的可靠性的性能
  • 如何避免重复数据
  • 如何保证数据的质量

我们今天就来看看当前可用的六款数据采集的产品,重点关注它们是如何做到高可靠,高性能和高扩展。

1、Apache Flume

官网:https://flume.apache.org/

Flume 是Apache旗下的一款开源、高可靠、高扩展、容易管理、支持客户扩展的数据采集系统。 Flume使用JRuby来构建,所以依赖Java运行环境。

Flume最初是由Cloudera的工程师设计用于合并日志数据的系统,后来逐渐发展用于处理流数据事件。

大数据构架

Flume设计成一个分布式的管道架构,可以看作在数据源和目的地之间有一个Agent的网络,支持数据路由。

大数据构架

每一个agent都由Source,Channel和Sink组成。

Source

Source负责接收输入数据,并将数据写入管道。Flume的Source支持HTTP,JMS,RPC,NetCat,Exec,Spooling Directory。其中Spooling支持监视一个目录或者文件,解析其中新生成的事件。

Channel

Channel 存储,缓存从source到Sink的中间数据。可使用不同的配置来做Channel,例如内存,文件,JDBC等。使用内存性能高但不持久,有可能丢数据。使用文件更可靠,但性能不如内存。

Sink

Sink负责从管道中读出数据并发给下一个Agent或者最终的目的地。Sink支持的不同目的地种类包括:HDFS,HBASE,Solr,ElasticSearch,File,Logger或者其它的Flume Agent。

大数据构架

Flume在source和sink端都使用了transaction机制保证在数据传输中没有数据丢失。

大数据构架

Source上的数据可以复制到不同的通道上。每一个Channel也可以连接不同数量的Sink。这样连接不同配置的Agent就可以组成一个复杂的数据收集网络。通过对agent的配置,可以组成一个路由复杂的数据传输网络。

大数据构架

配置如上图所示的agent结构,Flume支持设置sink的Failover和Load Balance,这样就可以保证即使有一个agent失效的情况下,整个系统仍能正常收集数据。

大数据构架

Flume中传输的内容定义为事件(Event),事件由Headers(包含元数据,Meta Data)和Payload组成。

Flume提供SDK,可以支持用户定制开发:

Flume客户端负责在事件产生的源头把事件发送给Flume的Agent。客户端通常和产生数据源的应用在同一个进程空间。常见的Flume客户端有Avro,log4J,syslog和HTTP Post。另外ExecSource支持指定一个本地进程的输出作为Flume的输入。当然很有可能,以上的这些客户端都不能满足需求,用户可以定制的客户端,和已有的FLume的Source进行通信,或者定制实现一种新的Source类型。

同时,用户可以使用Flume的SDK定制Source和Sink。似乎不支持定制的Channel。

2、Fluentd

官网:http://docs.fluentd.org/articles/quickstart

Fluentd是另一个开源的数据收集框架。Fluentd使用C/Ruby开发,使用JSON文件来统一日志数据。它的可插拔架构,支持各种不同种类和格式的数据源和数据输出。最后它也同时提供了高可靠和很好的扩展性。Treasure Data, Inc 对该产品提供支持和维护。

大数据构架

Fluentd的部署和Flume非常相似:

大数据构架

Fluentd的架构设计和Flume如出一辙:

大数据构架

Fluentd的Input/Buffer/Output非常类似于Flume的Source/Channel/Sink。

Input

Input负责接收数据或者主动抓取数据。支持syslog,http,file tail等。

Buffer

Buffer负责数据获取的性能和可靠性,也有文件或内存等不同类型的Buffer可以配置。

Output

Output负责输出数据到目的地例如文件,AWS S3或者其它的Fluentd。

Fluentd的配置非常方便,如下图:

大数据构架

Fluentd的技术栈如下图:

大数据构架

FLuentd和其插件都是由Ruby开发,MessgaePack提供了JSON的序列化和异步的并行通信RPC机制。

大数据构架

Cool.io是基于libev的事件驱动框架。

FLuentd的扩展性非常好,客户可以自己定制(Ruby)Input/Buffer/Output。

Fluentd从各方面看都很像Flume,区别是使用Ruby开发,Footprint会小一些,但是也带来了跨平台的问题,并不能支持Windows平台。另外采用JSON统一数据/日志格式是它的另一个特点。相对去Flumed,配置也相对简单一些。

3、Logstash

https://github.com/elastic/logstash

Logstash是著名的开源数据栈ELK (ElasticSearch, Logstash, Kibana)中的那个L。

Logstash用JRuby开发,所有运行时依赖JVM。

Logstash的部署架构如下图,当然这只是一种部署的选项。

大数据构架

一个典型的Logstash的配置如下,包括了Input,filter的Output的设置。

大数据构架

几乎在大部分的情况下ELK作为一个栈是被同时使用的。所有当你的数据系统使用ElasticSearch的情况下,logstash是首选。

4、Chukwa

官网:https://chukwa.apache.org/

Apache Chukwa是apache旗下另一个开源的数据收集平台,它远没有其他几个有名。Chukwa基于Hadoop的HDFS和Map Reduce来构建(显而易见,它用Java来实现),提供扩展性和可靠性。Chukwa同时提供对数据的展示,分析和监视。很奇怪的是它的上一次github的更新事7年前。可见该项目应该已经不活跃了。

Chukwa的部署架构如下:

大数据构架

Chukwa的主要单元有:Agent,Collector,DataSink,ArchiveBuilder,Demux等等,看上去相当复杂。由于该项目已经不活跃,我们就不细看了。

5、Scribe

代码托管:https://github.com/facebookarchive/scribe

Scribe是Facebook开发的数据(日志)收集系统。已经多年不维护,同样的,就不多说了。

大数据构架

6、Splunk Forwarder

官网:http://www.splunk.com/

以上的所有系统都是开源的。在商业化的大数据平台产品中,Splunk提供完整的数据采金,数据存储,数据分析和处理,以及数据展现的能力。

Splunk是一个分布式的机器数据平台,主要有三个角色:

Search Head负责数据的搜索和处理,提供搜索时的信息抽取。

Indexer负责数据的存储和索引

Forwarder,负责数据的收集,清洗,变形,并发送给Indexer

大数据构架

Splunk内置了对Syslog,TCP/UDP,Spooling的支持,同时,用户可以通过开发Script Input和Modular Input的方式来获取特定的数据。在Splunk提供的软件仓库里有很多成熟的数据采集应用,例如AWS,数据库(DBConnect)等等,可以方便的从云或者是数据库中获取数据进入Splunk的数据平台做分析。

这里要注意的是,Search Head和Indexer都支持Cluster的配置,也就是高可用,高扩展的,但是Splunk现在还没有针对Farwarder的Cluster的功能。也就是说如果有一台Farwarder的机器出了故障,数据收集也会随之中断,并不能把正在运行的数据采集任务Failover到其它的Farwarder上。

总结

我们简单讨论了几种流行的数据收集平台,它们大都提供高可靠和高扩展的数据收集。大多平台都抽象出了输入,输出和中间的缓冲的架构。利用分布式的网络连接,大多数平台都能实现一定程度的扩展性和高可靠性。

其中Flume,Fluentd是两个被使用较多的产品。如果你用ElasticSearch,Logstash也许是首选,因为ELK栈提供了很好的集成。Chukwa和Scribe由于项目的不活跃,不推荐使用。

Splunk作为一个优秀的商业产品,它的数据采集还存在一定的限制,相信Splunk很快会开发出更好的数据收集的解决方案。


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
4月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
4月前
|
数据可视化 关系型数据库 MySQL
基于python大数据的的海洋气象数据可视化平台
针对海洋气象数据量大、维度多的挑战,设计基于ECharts的可视化平台,结合Python、Django与MySQL,实现数据高效展示与交互分析,提升科研与决策效率。
|
5月前
|
存储 SQL 分布式计算
终于!大数据分析不用再“又要快又要省钱”二选一了!Dataphin新功能太香了!
Dataphin推出查询加速新功能,支持用StarRocks等引擎直连MaxCompute或Hadoop查原始数据,无需同步、秒级响应。数据只存一份,省成本、提效率,权限统一管理,打破“又要快又要省”的不可能三角,助力企业实现分析自由。
280 49
|
4月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
4月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
5月前
|
消息中间件 数据采集 NoSQL
秒级行情推送系统实战:从触发、采集到入库的端到端架构
本文设计了一套秒级实时行情推送系统,涵盖触发、采集、缓冲、入库与推送五层架构,结合动态代理IP、Kafka/Redis缓冲及WebSocket推送,实现金融数据低延迟、高并发处理,适用于股票、数字货币等实时行情场景。
686 3
秒级行情推送系统实战:从触发、采集到入库的端到端架构
|
4月前
|
数据采集 缓存 大数据
【赵渝强老师】大数据日志采集引擎Flume
Apache Flume 是一个分布式、可靠的数据采集系统,支持从多种数据源收集日志信息,并传输至指定目的地。其核心架构由Source、Channel、Sink三组件构成,通过Event封装数据,保障高效与可靠传输。
311 1
|
5月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
5月前
|
Java API 开发工具
灵码产品演示:软件工程架构分析
本演示展示灵码对复杂软件项目的架构分析与文档生成能力。通过Qwen3模型,结合PlantUML,自动生成系统架构图、微服务时序图,并提取API接口文档,实现高效、智能的代码理解与文档输出。
330 5