颠覆大数据分析之RDD的表达性

简介:

颠覆大数据分析之RDD的表达性

译者:黄经业    购书

正如前面在比较Spark及DSM系统时所提到的,由于RDD只支持粗粒度的操作,因此它有一定的局限性。但是RDD的表达性对于大多数程序而言其实已经足够好了。AMPLabs团队他们仅花了数百行代码就开发出了整个Pregel,这是Spark上的一个小的库。可以通过RDD及相关的操作来表示的集群计算模型列举如下:

  • Map-Reduce:如果存在混合器的话,这个可以使用RDD上的flatMap和reduceByKey操作来表示。简单点的话可以表示成flatMap和groupByKey操作。运算符则对应于Spark中的转换操作。
  • DryadLINQ:DryadLINQ(Yu等2008)通过结合了声明性及命令式编程提供了MR所没有的操作。大多数操作符都能对应上Spark中的转换操作。Dryad中的apply结构就类似于RDD的map转换,而Fork结构则类似于flatMap转换。
  • 整体同步并行(BSP):Pregel (Malewicz等 2010)中的计算由一系列称为超步骤的迭代所组成。图中的每个顶点都关联上一个用户定义的计算函数;Pregel会确保在每一个超步骤中,用户定义的函数都会并行地在每一条边上执行。顶点可以通过边来发送消息并与其它的顶点交互数据。同样的,还会有一个全局的栅栏——当所有的计算函数都终止的时候它就会向前移动。熟悉BSP的读者可能会知道,Pregel是一个完美的BSP的典范——一组实体在并行地计算用户定义的函数,它们有全局的同步器并可以交换消息。由于同一个用户函数会作用于所有的顶点,这种情况可以这样实现,将所有顶点存储在一个RDD中并在上面运行flatMap操作来生成一个新的RDD。把它和跟顶点的RDD连接到一块,这样就可以实现消息传递了。
  • 迭代式Map-Reduce:HaLoop项目也同样扩展了Hadoop来支持迭代式机器学习算法。HaLoop不仅为迭代式应用提供了编程抽象,同时它还用到了缓存的概念来在迭代间进行数据共享和固定点校验(迭代的终止)以便提升效率。Twister (Ekanayake等2010)是另一个类似HaLoop的尝试。这些在Spark中都可以很容易实现,因为它本身非常容易进行迭代式计算。AMPLabs团队实现HaLoop仅花了200行代码。
目录
相关文章
|
3月前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
258 2
|
30天前
|
数据采集 存储 机器学习/深度学习
数据的秘密:如何用大数据分析挖掘商业价值
数据的秘密:如何用大数据分析挖掘商业价值
53 9
|
2月前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
276 15
|
2月前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
2月前
|
分布式计算 DataWorks 搜索推荐
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
|
3月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
195 4
|
3月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
82 4
|
3月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
581 5
|
3月前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
411 14
|
3月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
235 2