Apache Kylin优化–高级设置:聚合组(Aggregation Group)原理解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介:

“随着维度数目的增加,Cuboid 的数量会爆炸式地增长。为了缓解 Cube 的构建压力,Apache Kylin 引入了一系列的高级设置,帮助用户筛选出真正需要的 Cuboid。这些高级设置包括聚合组(Aggregation Group)、联合维度(Joint Dimension)、层级维度(Hierachy Dimension)和必要维度(Mandatory Dimension)等。”

众所周知,Apache Kylin 的主要工作就是为源数据构建 N 个维度的 Cube,实现聚合的预计算。理论上而言,构建 N 个维度的 Cube 会生成 2N 个 Cuboid, 如图 1 所示,构建一个 4 个维度(A,B,C, D)的 Cube,需要生成 16 个Cuboid。

图1

随着维度数目的增加 Cuboid 的数量会爆炸式地增长,不仅占用大量的存储空间还会延长 Cube 的构建时间。为了缓解 Cube 的构建压力,减少生成的 Cuboid 数目,Apache Kylin 引入了一系列的高级设置,帮助用户筛选出真正需要的 Cuboid。这些高级设置包括聚合组(Aggregation Group)、联合维度(Joint Dimension)、层级维度(Hierachy Dimension)和必要维度(Mandatory Dimension)等,本系列将深入讲解这些高级设置的含义及其适用的场景。

本文将着重介绍聚合组的实现原理与应用场景实例。

聚合组(Aggregation Group)

用户根据自己关注的维度组合,可以划分出自己关注的组合大类,这些大类在 Apache Kylin 里面被称为聚合组。例如图 1 中展示的 Cube,如果用户仅仅关注维度 AB 组合和维度 CD 组合,那么该 Cube 则可以被分化成两个聚合组,分别是聚合组 AB 和聚合组 CD。如图 2 所示,生成的 Cuboid 数目从 16 个缩减成了 8 个。

图2

图2

用户关心的聚合组之间可能包含相同的维度,例如聚合组 ABC 和聚合组 BCD 都包含维度 B 和维度 C。这些聚合组之间会衍生出相同的 Cuboid,例如聚合组 ABC 会产生 Cuboid BC,聚合组 BCD 也会产生 Cuboid BC。这些 Cuboid不会被重复生成,一份 Cuboid 为这些聚合组所共有,如图 3 所示。

图3

有了聚合组用户就可以粗粒度地对 Cuboid 进行筛选,获取自己想要的维度组合。

应用实例

假设创建一个交易数据的 Cube,它包含了以下一些维度:顾客 ID buyer_id 交易日期 cal_dt、付款的方式 pay_type 和买家所在的城市 city。有时候,分析师需要通过分组聚合 city、cal_dt 和 pay_type 来获知不同消费方式在不同城市的应用情况;有时候,分析师需要通过聚合 city 、cal_dt 和 buyer_id,来查看顾客在不同城市的消费行为。在上述的实例中,推荐建立两个聚合组,包含的维度和方式如图 4 :

聚合组 1: [cal_dt, city, pay_type]

聚合组 2: [cal_dt, city, buyer_id]

在不考虑其他干扰因素的情况下,这样的聚合组将节省不必要的 3 个 Cuboid: [pay_type, buyer_id]、[city, pay_type, buyer_id] 和 [cal_dt, pay_type, buyer_id] 等,节省了存储资源和构建的执行时间。

Case 1:

SELECT cal_dt, city, pay_type, count(*) FROM table GROUP BY cal_dt, city, pay_type 则将从 Cuboid [cal_dt, city, pay_type] 中获取数据。

Case2:

SELECT cal_dt, city, buy_id, count(*) FROM table GROUP BY cal_dt, city, buyer_id 则将从 Cuboid [cal_dt, city, pay_type] 中获取数据。

Case3 如果有一条不常用的查询:

SELECT pay_type, buyer_id, count(*) FROM table GROUP BY pay_type, buyer_id 则没有现成的完全匹配的 Cuboid。

此时,Apache Kylin 会通过在线计算的方式,从现有的 Cuboid 中计算出最终结果。

小结

Apache Kylin 作为一种多维分析工具,其采用预计算的方法,利用空间换取时间,提高查询效率。本文介绍了 Apache Kylin 的高级设置中聚合组的部分,聚合组适用于当分析师粗粒度地关注某些维度去进行分组聚合的场景。


本文作者:Kylin

来源:51CTO

相关文章
|
11天前
|
消息中间件 监控 大数据
优化Apache Kafka性能:最佳实践与调优策略
【10月更文挑战第24天】作为一名已经对Apache Kafka有所了解并有实际使用经验的开发者,我深知在大数据处理和实时数据流传输中,Kafka的重要性不言而喻。然而,在面对日益增长的数据量和业务需求时,如何保证系统的高性能和稳定性成为了摆在我们面前的一个挑战。本文将从我的个人视角出发,分享一些关于如何通过合理的配置和调优来提高Kafka性能的经验和建议。
37 4
|
21天前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
38 3
|
8天前
|
算法 Java 数据库连接
Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性
本文详细介绍了Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性。连接池通过复用数据库连接,显著提升了应用的性能和稳定性。文章还展示了使用HikariCP连接池的示例代码,帮助读者更好地理解和应用这一技术。
23 1
|
11天前
|
消息中间件 存储 负载均衡
Apache Kafka核心概念解析:生产者、消费者与Broker
【10月更文挑战第24天】在数字化转型的大潮中,数据的实时处理能力成为了企业竞争力的重要组成部分。Apache Kafka 作为一款高性能的消息队列系统,在这一领域占据了重要地位。通过使用 Kafka,企业可以构建出高效的数据管道,实现数据的快速传输和处理。今天,我将从个人的角度出发,深入解析 Kafka 的三大核心组件——生产者、消费者与 Broker,希望能够帮助大家建立起对 Kafka 内部机制的基本理解。
40 2
|
14天前
|
数据采集 存储 编解码
一份简明的 Base64 原理解析
Base64 编码器的原理,其实很简单,花一点点时间学会它,你就又消除了一个知识盲点。
45 3
|
11天前
|
供应链 安全 分布式数据库
探索区块链技术:从原理到应用的全面解析
【10月更文挑战第22天】 本文旨在深入浅出地探讨区块链技术,一种近年来引起广泛关注的分布式账本技术。我们将从区块链的基本概念入手,逐步深入到其工作原理、关键技术特点以及在金融、供应链管理等多个领域的实际应用案例。通过这篇文章,读者不仅能够理解区块链技术的核心价值和潜力,还能获得关于如何评估和选择适合自己需求的区块链解决方案的实用建议。
33 0
|
22天前
|
前端开发 JavaScript UED
axios取消请求CancelToken的原理解析及用法示例
axios取消请求CancelToken的原理解析及用法示例
69 0
|
25天前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
79 0
|
21天前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
505 13
Apache Flink 2.0-preview released
|
25天前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
59 3

推荐镜像

更多