开发者入门必读:最值得看的十大机器学习公开课

简介: 在当下的机器学习热潮,人才匮乏十分显著。截至目前,国内开设人工智能(AI)专业的高校不多,相当多的开发者是跨界入门,需要自学大量知识并摸索。因而优质的学习资源至关重要。因此,雷锋网搜集了全世界范围内最受欢迎的机器学习课程,整理成这份“机器学习十大入门公开课”盘点,集中呈现给各位。

开发者入门必读:最值得看的十大机器学习公开课

在当下的机器学习热潮,人才匮乏十分显著。截至目前,国内开设人工智能(AI)专业的高校不多,相当多的开发者是跨界入门,需要自学大量知识并摸索。因而优质的学习资源至关重要。因此,雷锋网搜集了全世界范围内最受欢迎的机器学习课程,整理成这份“机器学习十大入门公开课”盘点,集中呈现给各位。这份推荐榜颇费心血,综合考虑了难易、侧重点、时效性等诸多因素,希望能帮助大家找到最适合自己的学习资源。

这些课程全部免费开放,

有的缺少中文字幕。

1. 吴恩达“机器学习”公开课

开发者入门必读:最值得看的十大机器学习公开课

  • 课程名称:机器学习 Machine Learning

  • 主讲人:吴恩达 Andrew Ng

  • 授课机构:斯坦福大学

  • 发布平台:Coursera

  • 语言:英语,汉语字幕

  • 网址:https://www.coursera.org/learn/machine-learning

无论国内国外,这是最火的机器学习入门课程,没有之一。无数新手都是通过这门课对机器学习初窥门径。吴恩达老师用极其清楚直白的语言,对机器学习的几种主要算法做了初步介绍。

这门课最大的特点,是它侧重于概念理解而不是数学。数学推导过程基本被略过,重点放在让初学者理解这背后的思路。另外,它还十分重视联系实际和经验总结:1. 课程中吴恩达老师列举了许多算法实际应用的例子 2. 他提到当年他们入门 AI 时面临的许多问题,以及处理这些难题的经验。

课程中代码教程使用的是 Octave/MATLAB,因此不需要会 Python、C 语言,适合没有编程基础的新手。

总结起来,这门课对数学、统计、IT 基础薄弱的童鞋十分友好。其实很多机器学习入门课,都是假定学生已修完这一门,于是重点对其进行补充——讲解这门课程中吴恩达老师未涉及、或是涉及不深的话题。因此,对于机器学习 “一张白纸”的童鞋,雷锋网强烈推荐从这门课起步,然后选择其他入门课程进阶,以在脑海中建立起更全面的知识体系。另外,Coursera 上这门课的论坛十分活跃,不管抛出什么问题都会有人解答,算是一个额外的好处。

彩蛋:网易公开课上有吴恩达老师在斯坦福授课的实录视频。内容比较深入,但时间比较久了,可作为进阶姊妹篇。地址:http://open.163.com/special/opencourse/machinelearning.html

2. 加州理工 “从数据中学习”

开发者入门必读:最值得看的十大机器学习公开课

  • 课程名称:Learning from Data,网易公开课译名为“加州理工学院公开课:机器学习与数据挖掘”

  • 主讲人:Yaser Abu-Mostafa

  • 授课机构:加州理工学院

  • 发布平台:edX(原版),网易公开课

  • 语言:英语,网易有汉语字幕

  • 网址: https://www.edx.org/course/caltechx/caltechx-cs1156x-learning-data-2516,edX;

    http://open.163.com/special/opencourse/learningfromdata.html,网易。

这同样是一门机器学习的入门课,但并不简单。该课程强调数据,是因为机器学习与各领域的大数据处理应用(比如金融、医疗)联系十分紧密。这门课内容涵盖基础理论、算法和应用,平衡了理论与实践,既覆盖数学统计,也包含启发式的概念理解

课程结构是这样的:

  • 什么是学习?

  • 机器能学习吗?

  • 怎么做到?

  • 怎么做好?

  • 经验教训。

不少人评论该课程结构就像讲故事,它有助于学习者形成对机器学习概念和模型深度、直觉性的理解。学习者公认它内容非常充实,但对作业模块的争议很大:有人认为难度偏高并且缺乏反馈,有人认为它是网上能找到的、最好的机器学习练习。

彩蛋:Yaser Abu-Mostafa 出版了同名著作 《Learning From Data》,可作为该课程的教材和补充。

3. Tom Mitchell 机器学习课程

开发者入门必读:最值得看的十大机器学习公开课

  • 课程名称:机器学习 Machine Learning

  • 主讲人:Tom Mitchell

  • 授课机构:卡内基梅隆大学(CMU)

  • 发布平台:CMU 官网

  • 语言:英语

  • 网址:http://www.cs.cmu.edu/~tom/10701_sp11/

这门课是学界人士的最爱,是入门课程之中较全面、高阶的一门。课时为 15 周,远超大多数机器学习慕课。其覆盖的话题非常广,按先后次序包括:代数和概率论,机器学习的基础工具,概率图模型,AI,神经网络,主动学习,增强学习。课程内容和练习十分简洁明白,概念解释清楚到位。

Tom Mitchell 是 AI 领域德高望重的老牌宗师,他的《Machine Learning》 (中文版为《计算机科学丛书:机器学习》),是最经典的机器学习教科书之一。但因为时间久远,涉及的一些概念与今天的开发者并没有太大关联,更适合需要了解人工智能来龙去脉的大学师生。这门课程与之类似,能帮助学习者理清机器学习的发展脉络。它适合计划进行系统性学习、投入大量时间的人。

对于初学者,建议至少听完吴恩达的机器学习课程之后,再修这一门。

4. 台大林轩田老师的機器學習基石

开发者入门必读:最值得看的十大机器学习公开课

  • 课程名称:機器學習基石

  • 主讲人:林轩田

  • 授课机构:台湾大学

  • 发布平台:Coursera

  • 语言:汉语

这是为汉语学子量身定做的入门课,相当于台湾大学机器学习课程前半学期的课,教给大家的是机器学习最核心的知识。林老师是教科书《Learning From Data》 的作者之一,是华人机器学习领域年轻有为的青年学者。这门课程十分用心细致,内容比吴恩达老师的入门课程稍稍充实一些。

林老师表示,针对顶级机器学习公开课全是英语授课的现状,不少学生反映英语教学有不易吸收之处。因此,借推出这门课程,希望帮助汉语为母语的学生减少入门难度。

针对如何让学生接受枯燥的算法,林老师说道:

“我们的课程设计中,大家会看到我们把对算法与数学式的推导,以‘解决问题’的过程方式呈现。也就是说,我们对算法的介绍是环绕着‘为什么’出发的,当同学们脑中有‘为什么’的时候,就有目标去理解这些算法与数学式的内容了。”

《Learning From Data》 也可作为这门课的教科书。学习 Yaser Abu-Mostafa 的课程有不解之处,可与这门课互相印证。

目前该课程已在 Coursera 下架,何时重开尚属未知。好在网易公开课、Youtube 倒是有全套视频,地址是:http://c.open.163.com/coursera/courseIntro.htm?cid=938 以及 https://www.youtube.com/playlist?list=PLXVfgk9fNX2I7tB6oIINGBmW50rrmFTqf。更多课程资料可从台大官网找到(网页为英语)http://www.csie.ntu.edu.tw/~htlin/mooc/。

彩蛋:台大 2015 年机器学习课程的大纲以及学习资料(PPT):https://www.csie.ntu.edu.tw/~htlin/course/ml15fall/,可作为补充。顺便提一句,林老师把台大后半学期的课程开成另一门 Coursera 课程“机器学习技巧”,作为进阶。目前 Coursera 也已撤下。网易公开课地址为 http://c.open.163.com/coursera/courseIntro.htm?cid=1664。

5. 谷歌人工智能入门

开发者入门必读:最值得看的十大机器学习公开课

  • 课程名称:人工智能入门  Intro to Artificial Intelligence

  • 主讲人:Peter Norvig,Sebastian Thrun

  • 授课机构:谷歌

  • 发布平台:优达学城 Udacity

  • 语言:英语,汉语字幕

  • 网址:https://cn.udacity.com/course/intro-to-artificial-intelligence--cs271

该课程久享盛名,是 AI 入门最好的公开课之一(雷锋网注:有人认为可以去掉“之一”)。

严格来说,它并不是一门机器学习课程。但其中有一周的主题是机器学习,它还介绍了另外几个 AI 主要领域:概率推理、信息检索、机器人学、自然语言处理等。鉴于学习机器学习的童鞋,几乎都会对 AI 这个大学科有兴趣——这门课程便是探索机器学习周边与交叉领域的绝好机会

两位主讲者,Peter Norvig 和 Sebastian Thrun,一个是谷歌研究总监,一个是斯坦福著名机器学习教授,均是与吴恩达、Yann Lecun 同级别的顶级 AI 专家。

需要强调的是,该课程倾向于介绍 AI 的实际应用。课程练习广受好评。

6. UBC 本科生的机器学习课程

开发者入门必读:最值得看的十大机器学习公开课

  • 课程名称:面向本科生的机器学习课 Machine Learning for Undergraduates

  • 主讲人: Nando de Freitas

  • 授课机构:英属哥伦比亚大学(UBC)

  • 发布平台:Youtube

  • 语言:英语

  • 网址:https://www.youtube.com/playlist?list=PLE6Wd9FR--Ecf_5nCbnSQMHqORpiChfJf

Nando de Freitas 是机器学习领域非常杰出的学者。他的这门课很适合作为吴恩达老师“机器学习”的进阶课程,因为:1. “机器学习”省略掉的一些概念,可以在这门课中找到。2. “机器学习”课 不重视数学,而数学是这门课的重点内容。Nando de Freitas 对诸如概率论、log likelihood 等基础数学原理做了很好的讲解,并以此为基础介绍更高级的数学、统计概念。

对于机器学习新手,完全略过数学细节是很危险的,这门课会帮助你打下基础。

但是,它录制于 2012  年,时间也比较久了。因此,雷锋网特意奉上彩蛋一枚。

彩蛋:Nando de Freitas 2013 年转入牛津大学任教。这是他 2014-2015 学年在牛津的全套深度学习课程,包括视频、PPT 以及练习:https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/ (视频保存在 Youtube)。

7. Yann Lecun 深度学习公开课

开发者入门必读:最值得看的十大机器学习公开课

  • 课程名称:深度学习 Deep Learning

  • 主讲人:Yann Lecun

  • 授课机构:法兰西学院

  • 发布平台:法兰西学院官网

  • 语言:法语,英语字幕

  • 网址:https://www.college-de-france.fr/site/en-yann-lecun/course-2016-04-15-11h00.htm

Yann Lecun 在 2016 年初于法兰西学院开课,这是其中关于深度学习的 8 堂课。当时是用法语授课,后来加入了英文字幕。

作为人工智能领域大牛和 Facebook AI 实验室(FAIR)的负责人,Yann Lecun 身处业内机器学习研究的最前沿。他曾经公开表示,现有的一些机器学习公开课内容已经有些过时。通过 Yann Lecun 的课程能了解到近几年深度学习研究的最新进展。该系列可作为探索深度学习的进阶课程。

 8.  Geoffrey Hinton  深度学习课程

开发者入门必读:最值得看的十大机器学习公开课

  • 课程名称:神经网络用于机器学习 Neural Networks For Machine Learning;网易译名“神经网络的机器学习”

  • 主讲人:Geoffrey Hinton

  • 授课机构:多伦多大学

  • 发布平台:Coursera、网易公开课

  • 语言:英语,汉语字幕

  • 网址:https://www.coursera.org/learn/neural-networks,Coursera;

    http://c.open.163.com/coursera/courseIntro.htm?cid=77,网易

深度学习必修课程,讲师为该领域的一代宗师 Geoffrey Hinton。

这门课程聚焦于神经网络和深度学习,是深入了解该领域最好的课程之一(雷锋网(公众号:雷锋网)注:很多人认为可以去掉“之一”)。

课程官方介绍:

“(你会在这门课)学习人工神经网络以及它们如何应用于机器学习,比方说语音、物体识别,图像分割(image segmentation),建模语言、人体运动等等。我们同时强调基础算法,以及对它们成功应用所需的实用技巧 。”

这门课录制于 2013-2013,时效性上不如 Yann Lecun 的法兰西学院公开课,建议两者结合。另外,它要求微积分、Python 基础,涉及许多专有名词,对初学者难度较大,需自己查找相关资料。

9.  哥伦比亚大学的机器学习公开课

开发者入门必读:最值得看的十大机器学习公开课

  • 课程名称:机器学习 Machine Learning

  • 主讲人:John W. Paisley

  • 授课机构:哥伦比亚大学

  • 发布平台:edX

  • 语言:英语

  • 网址:https://www.edx.org/course/machine-learning-columbiax-csmm-102x

在这份大牛云集的榜单中,该课程的主讲者——哥伦比亚大学副教授 John Paisley,只是一名相对普通的青年学者。但是,这门课程将于两天后,也就是 2017 年 1 月 16 日首次开课。这使它成为时下最新的机器学习入门课程。要知道,近一两年来人工智能和机器学习的发展完全可以用“日新月异”来形容——涌现的新方法、新理论,即便是一流专家也有目不暇接之感。换句换说,三、四年前的课程,可能现在有许多内容已经过时了。

这是 Yann LeCun 提醒大家注意学习资源时效性的原因所在。

可惜许多一流的机器学习公开课,距离录制都有些久了。我们知道一堂公开课背后所耗费的巨大人力。因此,对于部分课程在近两三年并没有更新的事实,倒也不能去怪主讲者和平台。但这使得比较新、时效性较强的课程格外可贵。

这门课中,学习者会了解到机器学习的算法、模型和方法,以及它们在现实生活中的应用。

由于是首次开课,尚没有对该课程的反馈。但鉴于哥伦比亚大学的研究、教学实力,课程品质应当值得期待。

10. MIT 进阶课程

开发者入门必读:最值得看的十大机器学习公开课

  • 课程名称:机器学习 Machine Learning

  • 主讲人:Tommi Jaakkola

  • 授课机构:麻省理工学院(MIT)

  • 发布平台:MIT Opencourseware

  • 语言:英语

  • 网址:https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/index.htm

这是一门研究生水平的机器学习课程,难度较高。可惜的是,MIT 并没有提供课程视频,而是以参考书目和课堂笔记的形式,让我们得以一窥该课程的内容。小编认为,这些学习资源的价值仍旧不可估量。因为如此,相比常规公开课,它不会耗费过多时间,非常适合有一定基础的学习者印证自己所学

小结

这就是雷锋网为您盘点的十大最有价值的机器学习入门公开课。这些课程有浅有深,分别对机器学习不同领域、方面有所侧重。各位童鞋可根据自己所需,自行选择最适合自己的课程。不过,小编必须提醒各位,所有盘点都不可避免得掺杂了主观因素。虽然雷锋网已尽力按照课程质量与业内人士的评价来制定该推荐榜,但自知无法做到十足的公正客观。比方说,该榜单倾向于机器学习的“入门”,而非开发者进阶;倾向于概念、算法学习,而非实战技巧(比如 Python 教程);倾向于把全世界范围内最好的课程推荐给诸君,而对英语基础较差的学习者照顾不足。榜单之外尚有许多有价值、适应不同层次人士需求的公开课。因此,雷锋网特意列举了几个比较好的系统性机器学习课程以及学习平台,弥补该榜单不足,以供参考。

友情提醒,以下包含收费课程。

系统性课程:

  • 优达学城(Udacity)提供的的 “机器学习工程师”纳米学位,中文字幕,谷歌、滴滴参与授课,收费。

    https://cn.udacity.com/course/machine-learning-engineer-nanodegree--nd009

  • 华盛顿大学的“机器学习专业”系列课程,Coursera 平台,收费,共六门课。

    https://www.coursera.org/specializations/machine-learning

  • 约翰·霍普金斯大学的“数据科学专业”系列课程,Coursera 平台,收费,共十门课。

    https://www.coursera.org/specializations/jhu-data-science

  • 密歇根大学的“Python 的应用数据科学专业”系列课程,Coursera 平台,收费,共五门课。适合需要学习 Python 实战技巧的机器学习开发者。

    https://www.coursera.org/specializations/data-science-python

平台推荐:

国外的 Coursera、edX、优达学城(Udacity)、Udemy;国内的网易公开课、七月在线都集中了相对优质的学习资源。当然,英语不错的童鞋推荐国外学习网站,尤其它们的问答论坛非常有帮助。

对于英语基础不是那么好的童鞋,Coursera 和优达学城很重视中国市场,它们的大部分机器学习资源都添加了汉语字幕。对于 edX 和可汗学院的部分课程,网易公开课有字幕翻译。

对于需要在数学、统计方面补课的童鞋,除了以上几个平台之外,强烈推荐可汗学院 Khan Academy, 它的数学课非常有名,连比尔·盖茨都推荐给他子女,很适合从零起步打基础。

另外,雷锋网旗下 “AI 科技评论”会定期举办“硬创公开课”,邀请业内专家对机器学习热点问题进行深度讨论,并问答 AI 科技评论读者的问题 。上期,我们就请来新加坡国立大学的冯佳时教授剖析了 GANs (生成对抗网络)。更多信息请关注 AI 科技评论微信公众号。

相关文章:

机器学习十大算法都是何方神圣?看完你就懂了

入门必读 机器学习六大开发语言

Python、R、Java、 C++ 等:从业界反馈看机器学习语言趋势

干货分享 | 深度学习零基础进阶大法!

本文作者:三川

本文转自雷锋网禁止二次转载,原文链接


相关文章
|
2月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
11天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
40 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
1月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
40 2
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
35 1
|
1月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
49 0
|
1月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
36 0
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
28 1
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
70 2
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第6天】在人工智能领域,机器学习已成为核心技术。本文指导初学者使用Python与Scikit-learn入门机器学习,涵盖基本概念、环境搭建、数据处理、模型训练及评估等环节。Python因简洁性及其生态系统成为首选语言,而Scikit-learn则提供了丰富工具,简化数据挖掘与分析流程。通过实践示例,帮助读者快速掌握基础知识,为进一步深入研究奠定坚实基础。
33 4