预告:解读全新声学模型与算法:2016 年语音识别的重大进步丨硬创公开课

简介:

在去年的锤子发布会中,罗永浩现场演示了讯飞输入法后让用户意识到当下语音识别能力的强大。当然,语音识别在安静环境、常用字词、发音标准情况下已非常成熟,但在复杂环境下如远场识别、带噪声识别等情况下仍有一定的提升空间。

2016 年语音识别领域有着不小的进展,其主要体现在模型方面的突破:

Deep CNN 模型大热,百度把 Deep CNN 应用于语音识别声学建模中,将其与基于 LSTM 和 CTC 的端对端语音识别技术相结合,大大提升了语音识别能力;微软则是把 ResNet 应用于语音识别,在产业标准 Switchboard 语音识别基准测试中,实现了词错率(WER)低至 5.9% 的新突破;科大讯飞也推出了全新的深度全序列卷积神经网络 DFCNN。

与此同时,新的深度学习开源框架层出不穷,开发者做语音识别到底是用 Kaldi 这类传统框架还是用 TensorFlow 这类新型框架呢?

针对上述几大话题,雷锋网(公众号:雷锋网)硬创公开课特邀供职于阿里巴巴最神秘的研究部门 iDST 的语音专家薛少飞博士,从声学模型和算法角度深入讲述 2016 年语音识别领域的重大突破。

嘉宾介绍

预告:解读全新声学模型与算法:2016 年语音识别的重大进步丨硬创公开课

薛少飞,阿里巴巴 iDST 语音识别专家,中国科学技术大学博士。现负责阿里声学模型研究与应用:包括语音识别声学建模和深度学习在业务场景中的应用。博士期间的研究方向为语音识别说话人自适应,提出基于 Speaker Code 的模型域自适应方法,在语音相关的会议和期刊上发表论文十余篇。

本期公开课内容将包括但不限于:

  • 语音识别领域的最新进展。

  • 详解阿里的声学模型。

  • Deep CNN 的原理,相比于之前的 LSTM、RNN、CTC 模型有哪些不同和优势。

  • 介绍不同单位提出的 Deep CNN 结构,如科大讯飞提出的深度全序列卷积神经网络 DFCNN 等。

  • ResNet 在语音识别中的应用。

  • 对比传统语音识别开源框架(Kaldi、CMU Sphinx、Julius)与深度学习开源框架(CNTK、TensorFlow)

活动详情

主题:解读全新声学模型与算法:2016 年语音识别的重大进步

嘉宾:薛少飞

时间:1 月 19 日周四晚上 20:00

形式:斗鱼直播+微信群与嘉宾问答互动

地址:硬创公开课 斗鱼直播间(房间号:788495)

本期雷锋网硬创公开课将会有【斗鱼直播+微信群问答】两个环节。嘉宾直播授课分享结束后,将会在微信群与群友问答互动。

为了打造高质量且细分的读者交流群,我们需要您提交一些基本资料作简单审核,而本次公开课读者群将优先 NLP 相关从业者和学生进入。

扫描下方海报上的二维码,进入雷锋网人工智能垂直微信公众号【AI 科技评论】后,可获得详细入群方式。

预告:解读全新声学模型与算法:2016 年语音识别的重大进步丨硬创公开课


本文作者:亚峰

本文转自雷锋网禁止二次转载,原文链接

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
3月前
|
机器学习/深度学习 人工智能 JSON
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
Microsoft Research最新推出的rStar2-Agent在AIME24数学基准测试中以80.6%的准确率超越超大规模模型DeepSeek-R1,展现“思考更聪明”而非“更长”的AI推理新方向。
163 8
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
207 2
|
3月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
3月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
3月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
3月前
|
机器学习/深度学习 运维 算法
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
203 0
|
3月前
|
机器学习/深度学习 数据采集 传感器
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
214 0
|
4月前
|
传感器 算法 定位技术
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
138 2
|
3月前
|
机器学习/深度学习 存储 算法
基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)
基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)
111 0
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习模型、算法与应用的全方位解析
深度学习,作为人工智能(AI)的一个重要分支,已经在多个领域产生了革命性的影响。从图像识别到自然语言处理,从语音识别到自动驾驶,深度学习无处不在。本篇博客将深入探讨深度学习的模型、算法及其在各个领域的应用。
930 3

热门文章

最新文章