遗传算法的基本概念和实现(附 Java 实现案例)

简介:

图一


如上图(左)所示,遗传算法当个体由多条染色体组成,每条染色体由多个基因组成。上图(右)展示了染色体分割和组合方式。

自然选择的概念

自然选择的过程从选择群体中最适应环境的个体开始。后代继承了父母的特性,并且这些特性将添加到下一代中。如果父母具有更好的适应性,那么它们的后代将更易于存活。迭代地进行该自然选择的过程,最终,我们将得到由最适应环境的个体组成的一代。

这一概念可以被应用于搜索问题中。我们考虑一个问题的诸多解决方案,并从中搜寻出最佳方案。

遗传算法含以下五步:

  1. 初始化
  2. 个体评价(计算适应度函数)
  3. 选择运算
  4. 交叉运算
  5. 变异运算

初始化

该过程从种群的一组个体开始,且每一个体都是待解决问题的一个候选解。

个体以一组参数(变量)为特征,这些特征被称为基因,串联这些基因就可以组成染色体(问题的解)。

在遗传算法中,单个个体的基因组以字符串的方式呈现,通常我们可以使用二进制(1 和 0 的字符串)编码,即一个二进制串代表一条染色体串。因此可以说我们将基因串或候选解的特征编码在染色体中。

种群、染色体和基因

个体评价(计算适应度函数)

个体评价利用适应度函数评估了该个体对环境的适应度(与其它个体竞争的能力)。每一个体都有适应度评分,个体被选中进行繁殖的可能性取决于其适应度评分。适应度函数值越大,解的质量就越高。适应度函数是遗传算法进化的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。

选择运算

选择运算的目的是选出适应性最好的个体,并使它们将基因传到下一代中。基于其适应度评分,我们选择多对较优个体(父母)。适应度高的个体更易被选中繁殖,即将较优父母的基因传递到下一代。

交叉运算

交叉运算是遗传算法中最重要的阶段。对每一对配对的父母,基因都存在随机选中的交叉点。

举个例子,下图的交叉点为 3。

父母间在交叉点之前交换基因,从而产生了后代。

父母间交换基因,然后产生的新后代被添加到种群中。

变异运算

在某些形成的新后代中,它们的某些基因可能受到低概率变异因子的作用。这意味着二进制位串中的某些位可能会翻转。

变异运算前后

变异运算可用于保持种群内的多样性,并防止过早收敛。

终止

在群体收敛的情况下(群体内不产生与前一代差异较大的后代)该算法终止。也就是说遗传算法提供了一组问题的解。
案例实现

种群的规模恒定。新一代形成时,适应度最差的个体凋亡,为后代留出空间。这些阶段的序列被不断重复,以产生优于先前的新一代。

这一迭代过程的伪代码:

START
Generate the initial population
Compute fitness
REPEAT
Selection
Crossover
Mutation
Compute fitness
UNTIL population has converged
STOP

Java 中的示例实现

以下展示的是遗传算法在 Java 中的示例实现,我们可以随意调试和修改这些代码。给定一组五个基因,每一个基因可以保存一个二进制值 0 或 1。这里的适应度是基因组中 1 的数量。如果基因组内共有五个 1,则该个体适应度达到最大值。如果基因组内没有 1,那么个体的适应度达到最小值。该遗传算法希望最大化适应度,并提供适应度达到最大的个体所组成的群体。注意:本例中,在交叉运算与突变运算之后,适应度最低的个体被新的,适应度最高的后代所替代。

import java.util.Random;

/**
*
* @author Vijini
*/

//Main class
public class SimpleDemoGA {

Population population = new Population();
Individual fittest;
Individual secondFittest;
int generationCount = 0;

public static void main(String[] args) {

Random rn = new Random();

SimpleDemoGA demo = new SimpleDemoGA();

//Initialize population
demo.population.initializePopulation(10);

//Calculate fitness of each individual
demo.population.calculateFitness();

System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);

//While population gets an individual with maximum fitness
while (demo.population.fittest < 5) {
++demo.generationCount;

//Do selection
demo.selection();

//Do crossover
demo.crossover();

//Do mutation under a random probability
if (rn.nextInt()%7 < 5) {
demo.mutation();
}

//Add fittest offspring to population
demo.addFittestOffspring();

//Calculate new fitness value
demo.population.calculateFitness();

System.out.println("Generation: " + demo.generationCount + " Fittest: " + demo.population.fittest);
}

System.out.println("\nSolution found in generation " + demo.generationCount);
System.out.println("Fitness: "+demo.population.getFittest().fitness);
System.out.print("Genes: ");
for (int i = 0; i < 5; i++) {
System.out.print(demo.population.getFittest().genes[i]);
}

System.out.println("");

}

//Selection
void selection() {

//Select the most fittest individual
fittest = population.getFittest();

//Select the second most fittest individual
secondFittest = population.getSecondFittest();
}

//Crossover
void crossover() {
Random rn = new Random();

//Select a random crossover point
int crossOverPoint = rn.nextInt(population.individuals[0].geneLength);

//Swap values among parents
for (int i = 0; i < crossOverPoint; i++) {
int temp = fittest.genes[i];
fittest.genes[i] = secondFittest.genes[i];
secondFittest.genes[i] = temp;

}

}

//Mutation
void mutation() {
Random rn = new Random();

//Select a random mutation point
int mutationPoint = rn.nextInt(population.individuals[0].geneLength);

//Flip values at the mutation point
if (fittest.genes[mutationPoint] == 0) {
fittest.genes[mutationPoint] = 1;
} else {
fittest.genes[mutationPoint] = 0;
}

mutationPoint = rn.nextInt(population.individuals[0].geneLength);

if (secondFittest.genes[mutationPoint] == 0) {
secondFittest.genes[mutationPoint] = 1;
} else {
secondFittest.genes[mutationPoint] = 0;
}
}

//Get fittest offspring
Individual getFittestOffspring() {
if (fittest.fitness > secondFittest.fitness) {
return fittest;
}
return secondFittest;
}


//Replace least fittest individual from most fittest offspring
void addFittestOffspring() {

//Update fitness values of offspring
fittest.calcFitness();
secondFittest.calcFitness();

//Get index of least fit individual
int leastFittestIndex = population.getLeastFittestIndex();

//Replace least fittest individual from most fittest offspring
population.individuals[leastFittestIndex] = getFittestOffspring();
}

}


//Individual class
class Individual {

int fitness = 0;
int[] genes = new int[5];
int geneLength = 5;

public Individual() {
Random rn = new Random();

//Set genes randomly for each individual
for (int i = 0; i < genes.length; i++) {
genes[i] = rn.nextInt() % 2;
}

fitness = 0;
}

//Calculate fitness
public void calcFitness() {

fitness = 0;
for (int i = 0; i < 5; i++) {
if (genes[i] == 1) {
++fitness;
}
}
}

}

//Population class
class Population {

int popSize = 10;
Individual[] individuals = new Individual[10];
int fittest = 0;

//Initialize population
public void initializePopulation(int size) {
for (int i = 0; i < individuals.length; i++) {
individuals[i] = new Individual();
}
}

//Get the fittest individual
public Individual getFittest() {
int maxFit = Integer.MIN_VALUE;
for (int i = 0; i < individuals.length; i++) {
if (maxFit <= individuals[i].fitness) {
maxFit = i;
}
}
fittest = individuals[maxFit].fitness;
return individuals[maxFit];
}

//Get the second most fittest individual
public Individual getSecondFittest() {
int maxFit1 = 0;
int maxFit2 = 0;
for (int i = 0; i < individuals.length; i++) {
if (individuals[i].fitness > individuals[maxFit1].fitness) {
maxFit2 = maxFit1;
maxFit1 = i;
} else if (individuals[i].fitness > individuals[maxFit2].fitness) {
maxFit2 = i;
}
}
return individuals[maxFit2];
}

//Get index of least fittest individual
public int getLeastFittestIndex() {
int minFit = 0;
for (int i = 0; i < individuals.length; i++) {
if (minFit >= individuals[i].fitness) {
minFit = i;
}
}
return minFit;
}

//Calculate fitness of each individual
public void calculateFitness() {

for (int i = 0; i < individuals.length; i++) {
individuals[i].calcFitness();
}
getFittest();
}

}


作者:Medium

来源:51CTO

目录
打赏
0
0
0
0
16429
分享
相关文章
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
124 1
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
这篇文章详细介绍了图的概念、表示方式以及深度优先遍历和广度优先遍历的算法实现。
94 1
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
课时8:Java程序基本概念(标识符与关键字)
课时8介绍Java程序中的标识符与关键字。标识符由字母、数字、下划线和美元符号组成,不能以数字开头且不能使用Java保留字。建议使用有意义的命名,如student_name、age。关键字是特殊标记,如蓝色字体所示。未使用的关键字有goto、const;特殊单词null、true、false不算关键字。JDK1.4后新增assert,JDK1.5后新增enum。
课时7:Java程序基本概念(注释)
课时7介绍了Java程序中的注释。编程语言有其语法和语义,注释有助于理解代码需求,防止断档。Java支持三类注释:单行(//)、多行(/* */)和文档注释(/** */)。注释不会被编译器编译。范例中展示了如何在代码中使用注释,并强调了注释对项目文档管理的重要性。
Java字面量详解:概念、分类与使用实例
本文介绍了Java字面量的概念、分类及应用。
63 11
Java的基础概念一
### Java编程基础简介 #### 一、注释 注释用于解释代码,不会参与编译和运行。Java支持三种注释: - **单行注释**:以 `//` 开头。 - **多行注释**:以 `/* ... */` 包围。 - **文档注释**:通常用于生成开发文档。 #### 二、关键字 关键字是被Java赋予特定含义的英文单词,全部小写,且在代码编辑器中有特殊颜色标记。常用的如 `class` 表示定义一个类。
Java的基础概念一
JAVA线程池有哪些队列? 以及它们的适用场景案例
不同的线程池队列有着各自的特点和适用场景,在实际使用线程池时,需要根据具体的业务需求、系统资源状况以及对任务执行顺序、响应时间等方面的要求,合理选择相应的队列来构建线程池,以实现高效的任务处理。
143 12
Java的基础概念(二)
本文介绍了Java编程语言中的运算符和表达式,涵盖算术运算符、赋值运算符、关系运算符、逻辑运算符、三元运算符等。重点讲解了算术运算符的使用,如加减乘除取余,并强调了整数除法和取余的特殊性。同时,详细说明了隐式转换与强制转换的概念及应用场景,以及字符串和字符的拼接规则。通过多个案例演示了不同运算符的实际应用,包括数值拆分、自增自减、三元表达式的使用等。最后简要提及了运算符的优先级,指出小括号具有最高优先级。
如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例详细说明
本文介绍了如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例,详细说明了从 Jenkins 安装配置到自动构建、测试和部署的全流程。文中还提供了一个 Jenkinsfile 示例,并分享了实践经验,强调了版本控制、自动化测试等关键点的重要性。
134 3
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
102 2
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等