朱小燕、王海峰、Rosalind Picard 等人亮相 AAAI,分享各自的研究心得丨AI科技评论周刊

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介:

朱小燕、王海峰、Rosalind Picard 等人亮相 AAAI,分享各自的研究心得丨AI科技评论周刊

雷锋网(公众号:雷锋网)按:本周,人工智能产、学两界的资深人士纷纷在顶级会议 AAAI 中亮相,分享了他们在各自研究方向的体会与心得。本期雷锋网 AI 科技评论周刊整理了清华大学朱小燕教授、麻省理工学院 Rosalind Picard 教授、百度副总裁王海峰、亚马逊 AWS 机器学习总监 Alex Smola 的分享。

独家 | 清华大学朱小燕教授做客 AI 科技评论,分享 NLP 和 AI 的那些事儿

在 AI 科技评论组织的 AAAI 中国之夜活动上,AAAI 现任执委杨强教授、清华大学智能技术与系统国家重点实验室主任、信息获取课题组的学术带头人朱小燕教授、今日头条实验室总监李磊、iFly.vc 合伙人沈瀚、物灵科技人工智能首席科学家吴惟心、iPIN 创始人杨洋在现场做了分享。

其中,清华大学朱小燕教授分享了她本人对从业者的一些建议,并提到了 NLP 学术和产业有何不同。

朱教授说,做计算机应用领域的学术研究,内容应该是跳起来能够够得着的,当下不那么踏实,但是,条件好了就能够使用。比如某研究院说要做能够观察人的面部表情情感变化,做能够进行情感交流的机器人。作为研究可以,作为概念产品可以试试,作为赚钱的产品就比较困难了。首先你就要叫计算机知道什么叫表情变化,大喜大悲容易,平时的细微表情变化就难了。又有多少人会察言观色,会到什么程度?家庭陪伴机器人假定的服务对象多半是老人,老人脸上就更不容易识别出喜怒哀乐的变化了。这些做研究是可以,有能力的企业可以做这样的研究做基础沉淀和展示,但是做产业就要想清楚了。再比如做陪伴老人的机器人产品。如果是行走机器人就要想清楚,机器人腿脚不方便,老人腿脚也不方便,两个腿脚不方便的在一起(笑)。这个东西还有不少问题需要解决。但是研究肯定是可以的。

“情感计算”之母 Rosalind Picard 二十年经验分享:那些令我惊讶的发现

身为“情感计算”之母的 Rosalind Picard,是该领域首屈一指的专家。在机器学习算法工具日渐普及的今天,人们猛然醒觉“认知”“情感”正是创造出真正的 AI 的瓶颈。于是,全世界的目光都投向了 Rosalind Picard 的研究。此次,AAAI 2017 邀请她前来做主题演讲,介绍“情绪计算”学科的由来、情绪识别机器学习算法、以及能监测人体焦虑、紧张情绪的传感器的最新研究进展。

Rosalind Picard是麻省理工学院(MIT)教授,在 MIT 的跨领域尖端科学实验室 Media Lab 从事机器学习与神经科学的交叉研究,一手创立了 Media Lab 情感计算研究部。她同时是两家初创公司 Affectiva 和 Empatica 的联合创始人,前者研发情绪识别、监测技术,后者生产整合这些技术的医疗传感器,例如医用可穿戴设备。但最重要的是,她的著作《Affective Computing》开创了计算机科学和人工智能学科中的新分支——“情感计算”。

深度 | 百度副总裁王海峰:百度在NLP领域都做了什么?

人工智能顶级会议暨 2017 届 AAAI 大会召开,AAAI 今年首次设置了AI in Practice (应用人工智能)环节,百度副总裁王海峰应邀做了名为“百度的自然语言处理”(Natural Language Processing at Baidu)的主题演讲。

王海峰在演讲中提到,语言是思想和知识的载体,而对语言的处理和理解就显得尤为重要。计算机领域中自然语言处理(Natural Language Processing: NLP)的目的,就是让计算机能够理解和生成人类语言。在百度,基于大数据、机器学习和语言学方面的积累,我们研发了知识图谱,我们分析理解 query、篇章及情感,我们构建了问答、机器翻译和对话系统。NLP技术已经应用在百度的众多产品上,比如搜索、Feed、o2o和广告等。

演讲主要针对知识图谱、语言理解、篇章理解、语言生成、诗歌生成、文本摘要、自然语言处理应用系统、机器翻译、对话系统等方向展开。

亚马逊 AWS 机器学习总监 Alex Smola:如何用 MXNet 构建可拓展的深度学习框架?

MXNet 在去年 11 月成为 Amazon AWS 的官方开源平台。在本次的 AAAI 2017 上,亚马逊 AWS 机器学习总监 Alex Smola 做了主题分享,介绍了如何利用 MXNet 构建一个可拓展的深度学习框架。雷锋网旗下 AI 科技评论对此做了全程报道。

Alex Smola 是 MXNet 主要作者李沐在 CMU 的博士导师,后者在 Smola 加入亚马逊期间一直在做 MXNet 开发和 AWS 上深度学习的应用,这也难怪在 Smola 演讲最开始的感谢名单上,第一个名字就是李沐。

那么,作为亚马逊的官方开源平台,MXNet 又是如何实现「又快又好」的目标呢?

Smola 指出,要构建一个这样集高效与个性化于一体的框架,首先不可避免地要涉及潜变量模型的设计。潜变量模型是一种结构方程模型,区别于显变量,指的是不能被直接观测、需要通过间接数据体现的指标。

本文作者:亚峰

本文转自雷锋网禁止二次转载,原文链接

相关文章
|
1月前
|
机器学习/深度学习 人工智能
打开AI黑匣子,三段式AI用于化学研究,优化分子同时产生新化学知识,登Nature
【10月更文挑战第11天】《自然》杂志发表了一项突破性的化学研究,介绍了一种名为“Closed-loop transfer”的AI技术。该技术通过数据生成、模型训练和实验验证三个阶段,不仅优化了分子结构,提高了光稳定性等性质,还发现了新的化学现象,为化学研究提供了新思路。此技术的应用加速了新材料的开发,展示了AI在解决复杂科学问题上的巨大潜力。
29 1
|
1月前
|
机器学习/深度学习 数据采集 人工智能
未来的守护神:AI驱动的网络安全之盾,如何用智慧的光芒驱散网络黑暗势力?揭秘高科技防御系统背后的惊天秘密!
【10月更文挑战第3天】随着网络技术的发展,网络安全问题日益严峻,传统防御手段已显不足。本文探讨了构建AI驱动的自适应网络安全防御系统的必要性及其关键环节:数据采集、行为分析、威胁识别、响应决策和执行。通过Python库(如scapy、scikit-learn和TensorFlow)的应用实例,展示了如何利用AI技术提升网络安全防护水平。这种系统能够实时监控、智能分析并自动化响应,显著提高防护效率与准确性,为数字世界提供更强大的安全保障。
60 2
|
9天前
|
人工智能 知识图谱
成熟的AI要学会自己搞研究!MIT推出科研特工
MIT推出科研特工SciAgents,结合生成式AI、本体表示和多代理建模,实现科学发现的自动化。通过大规模知识图谱和多代理系统,SciAgents能探索新领域、识别复杂模式,加速新材料发现,展现跨学科创新潜力。
33 12
|
7天前
|
人工智能 算法 新制造
走进北京科技大学,通义灵码与企业高校共筑 AI 创意课堂
近日,通义灵码有幸参与到一场由伊利集团主办的 AIGC 生态创新大赛路演舞台,与高校专家、企业代表、青年学子共同探讨 AIGC 创意应用,交流企业在数智领域转型、青年开发者科技创新的思路和落地实践。
|
8天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
1月前
|
人工智能 自然语言处理
召唤100多位学者打分,斯坦福新研究:AI科学家创新确实强
【10月更文挑战第6天】斯坦福大学最新研究评估了大型语言模型(LLMs)在生成新颖研究想法方面的能力,通过100多位NLP专家盲评LLMs与人类研究人员提出的想法。结果显示,LLMs在新颖性方面超越人类(p < 0.05),但在可行性上略逊一筹。研究揭示了LLMs作为科研工具的潜力与挑战,并提出了进一步验证其实际效果的设计。论文详见:https://arxiv.org/abs/2409.04109。
39 6
|
1月前
|
人工智能 自然语言处理 机器人
MIT新研究揭秘AI洗脑术!AI聊天诱导人类编造记忆,真假难辨
麻省理工学院的一项新研究《基于大型语言模型的对话式AI在证人访谈中加剧虚假记忆》显示,使用生成式聊天机器人进行犯罪证人访谈会显著增加参与者的虚假记忆,且影响持久。研究设置了对照组、问卷访谈、预设脚本及生成式聊天机器人四种条件,结果显示生成式聊天机器人诱导的虚假记忆数量远超其他方法。尽管AI技术在效率和准确性方面潜力巨大,但在敏感领域需谨慎应用,并需进一步评估风险,制定伦理准则和监管措施。论文详细内容见[这里](https://arxiv.org/abs/2408.04681)。
40 2
|
1月前
|
机器学习/深度学习 人工智能 监控
AI与未来医疗:重塑健康产业的双刃剑随着科技的迅猛发展,人工智能(AI)正以前所未有的速度融入各行各业,其中医疗领域作为关系到人类生命健康的重要行业,自然也成为AI应用的焦点之一。本文将探讨AI在未来医疗中的潜力与挑战,分析其对健康产业可能带来的革命性变化。
在医疗领域,人工智能不仅仅是一种技术革新,更是一场关乎生死存亡的革命。从诊断到治疗,从后台数据分析到前端临床应用,AI正在全方位地改变传统医疗模式。然而,任何技术的发展都有其两面性,AI也不例外。本文通过深入分析,揭示AI在医疗领域的巨大潜力及其潜在风险,帮助读者更好地理解这一前沿技术对未来健康产业的影响。
|
2月前
|
存储 人工智能 JavaScript
根据Accenture的研究,CEO和CFO谈论AI和GenAI是有原因的
数字化转型与当前GenAI领导者之间的关键区别在于,CEO和CFO(而非CIO)似乎参与了指导AI投资的过程。例如,Accenture在2024年1月报告称,到2023年底,在财报电话会议中提到AI的次数几乎达到4万次,因为C级领导层正在为“重大技术变革”做好准备
41 1
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。