大数据技术在发展 挑战与机遇并存

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

大数据技术是在传统数据处理手段无法应对海量数据的实时需求的情况下,采用新的信息技术来应对大数据爆发进行数据处理的技术。大数据技术一般可以包括基础架构支持、数据采集、数据存储、数据计算和数据展现交互等。

大数据技术的分类

大数据技术涵盖的范围十分广阔。基础架构支持方面主要包括了支撑大数据处理的基础架构级数据中心管理、云计算平台、云存储设备及技术、网络技术、资源监控等技术。而为了处理数据,则需要有大规模物理资源的云数据中心和具备高效的调度管理功能的云计算平台的支撑。

数据采集技术方面包含了数据采集的手段和数据处理技术。一般来讲数据采集最基础的需要各类传感器和软硬件设施,然后需要进行ETL(采集、转换和加载)过程,对数据进行清洗、过滤、校验、转换等各种预处理,然后将有效的数据转换成为合适的格式及类型。而部分企业还需要为了应对多源异构的数据采集和存储访问设计数据总线,以便于企业各个应用和服务之间的数据交换及共享。

数据存储技术则是在经历了转换之后,针对海量数据进行存储归档。一般会采用分布式文件系统以及分布式数据库进行存储,将数据分布到多了存储点中,提供备份、安全、访问接口及协议等机制。

大数据技术在不断发展中

而数据计算一般包括了数据查询、统计、分析、预测、挖掘、图谱处理、BI商业智能等各项相关技术,数据计算是数据处理的关键组成,也是大数据技术的核心部分。通过数据计算可以将大数据从数据转换为价值。

数据展现交互是与用户最贴近的一步。由于数据的最终使用者为用户,目标为给生产、运营、规划提供决策支持,因此一般会选择更为直观便捷的方式将数据的价值和内涵展示出来,让用户能够更有效的利用数据发挥价值。这一步出传统的报表和图形之外,当前最流行的手段莫过于可视化工具和人机交互等。

大数据技术面临的挑战

大数据技术在不断的发展过程中并非一帆风顺,其也遇到了不少挑战。

大数据面临问题并不少

在大数据采集方面,如在不损失数据本身价值的情况下尽可能的将数据集的量降低变小是个问题,在数据的清洗和去除过程中,如何有效的处理大数据,让其不损失价值,从一个平面的大数据中提取高附加价值的概念、理论以及知识才是关键。

大数据管理方面则需要面对多种不同类型的数据。由于当前数据以非结构化数据为主,而且这一趋势正在加强,如何面对分布、多态、异构的大数据进行管理,还需要更为有效和快捷的手段。

大数据存储方面,结构化数据尽管存储较为便捷,可是在海量数据的查询、统计和更新方面效率较低;如果面对非结构化数据,如视频、音频、文本、图片等,存储、检索都会存在一定困难,而且占用空间较大。对于半结构化数据,存储、分析都需要进行结构化数据转换,或者按照非结构化数据存储,难度较大而且不利于实时处理。

技术在发展 挑战与机遇并存

数据计算方面,分布式计算与并行计算都可以提供有效的技术支持,但是如何提供有效的利用手段,开战大数据分析处理还需要进一步研究,而且在计算方面尽力“傻瓜式”开发的现在,如何找到切实可靠的理想结果也是一个重点。

大数据应用领域,应用大数据辅助具体行业的落地仍然有待提高,如何快速开展治安防控、警情研判及指挥决策,发掘行业信息资源价值,提高领域大数据的利用率都需要进一步的落地实施。

大数据技术的提高是显而易见的,但是大数据落地是一个重大课题。提高大数据技术,增强大数据应用还会是很长时间里的主旋律。


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
5月前
|
人工智能 安全 网络安全
云计算与网络安全:挑战与机遇并存
本文深入探讨了云计算与网络安全之间的紧密关系,分析了云服务、网络安全和信息安全等技术领域的现状、挑战与未来发展趋势。通过对云计算的依赖性增长、网络攻击手段的多样化以及数据保护法规的日益严格等关键问题的剖析,本文旨在为相关从业者提供有价值的见解和应对策略。
175 12
|
5月前
|
机器学习/深度学习 安全 网络安全
云计算与网络安全:挑战、机遇与未来展望
本文深入探讨了云计算与网络安全之间的紧密联系,分析了云服务在提供便利性的同时,如何成为网络攻击的新目标。文章详细讨论了当前面临的主要安全威胁,包括数据泄露、身份盗用和DDoS攻击,并阐述了这些威胁对企业和个人用户的潜在影响。进一步地,本文提出了一系列有效的安全策略和最佳实践,旨在帮助组织和个人保护其云环境免受网络威胁的侵害。最后,文章展望了云计算与网络安全领域的未来发展趋势,强调了持续创新和技术发展的重要性,以应对不断演变的安全挑战。
|
7月前
|
运维 Cloud Native 云计算
云计算:重塑数字时代的基石与未来展望
云计算作为数字时代的基石,正以前所未有的速度推动着全球科技的进步和产业的升级。从基础概念到核心技术再到应用场景和未来趋势,云计算的每一步发展都充满了无限可能。我们相信在未来的日子里随着技术的不断进步和应用的不断深入云计算将会为我们带来更加便捷、高效、智能的生活体验和工作方式。让我们共同期待并参与到这场伟大的变革中来共同创造更加美好的未来!
187 0
|
9月前
|
机器学习/深度学习 存储 边缘计算
挑战与机遇:大规模数据处理引领数字时代的革新
在当今数字化时代,大规模数据处理成为推动技术发展的重要驱动力。本文将探讨大规模数据处理所面临的挑战,并介绍一些突破性技术,如分布式计算、深度学习和边缘计算,以及它们所带来的机遇。通过充分利用数据的价值,我们将实现更高效的决策、智能化的服务和创新的科学研究。
|
9月前
|
存储 供应链 大数据
大数据时代的机遇与挑战
大数据时代的机遇与挑战
|
SQL 存储 DataWorks
浅谈-大数据工程师面临的困境和要学习的技术
读书的时候,语文老师总会让同学看看作者的生平简介,谈谈作者为什么会写出这篇文章,文章诞生的背景是什么背景,一方面是让同学理解文章,另外一方面是让同学感同身受。 鄙人,不是大厂,也不算外包,算是靠在阿里系的一家创业公司的交付部门的小小大数据工程师,心比天高,命比纸薄。 当然,也和上学没有好好学习有关系,怨不得其他人。 回到正题,咋们先从我的个人经历聊一下大数据工程师现在面临的困境和我的一些解决思路。
392 0
传统行业将如何在互联网时代下发展
专注于传统市场的优耐达能源在互联网风向中,为了适应时代需求,决定建立网站。最终他选择了阿里云市场建站服务。
9222 2
|
安全 大数据 数据挖掘

热门文章

最新文章