北京大学王立威教授:高校算法的突破与创新要走在数据前面

简介:

雷锋网AI科技评论按:中国人工智能学会AIDL第二期【人工智能前沿讲习班】日前在北京中科院自动化所举行,本期讲习班的主题为【机器学习前沿】。北京大学教授王立威带来了题为《机器学习理论:回顾与展望》的主题报告,主要对机器学习中关于泛化能力的几个重要理论进行介绍。

北京大学教授王立威博士的主要研究领域集中于机器学习,在包括COLT, NIPS,JMLR, PAMI等权威会议期刊发表论文60余篇。2010年入选AI’s 10 to Watch,是首位获得该奖项的亚洲学者。2012年获得首届国家自然科学基金优秀青年基金,新世纪优秀人才。任NIPS等权威会议Area Chair,和多家学术期刊编委。在主题报告结束后,雷锋网AI科技评论与王教授做了短时间交流。

北京大学王立威教授:高校算法的突破与创新要走在数据前面

1. 您曾经指出,机器学习理论在于理解人工智能的局限性。结合您的研究经历,您认为人工智能现在能做什么?还不能做什么?可能的突破口又在哪里?

我觉得在过去几年,人工智能或者机器学习的发展已经把这个问题很好地展现了。现在做得很好的两个领域主要集中于图像和语音,由于深度神经网络的结构利用了先验知识,自然也非常适用于这两个领域。

当然,产业现在也发展得比较好,所以我认为未来短期内如果会有重大突破的话,更多的是在应用领域,找到和图像和语音相关的比较好的结合点,可能不是偏学术领域,而会是一个是偏商业化的方向。(AI科技评论:更好地产品化。)对,找到一个更好的应用。

2. 目前工业界开始出现与高校合作的趋势,前者提供数据和研发资金,后者提供研发支持,而往往这些研究都是应用导向的。您认为这样的合作会对理论研究产生怎样的影响?

我想举这么一个例子,就是产生很大影响的 AlphaGo。从最终展示出来的成果来看,我们可以认为,AlphaGo 是一个非常成熟的应用系统。而 Alpha Go 从最开始的想法到技术落地,同样很大地推动了学术的前进。比如 DeepMind,不论是从算法和理论上都有突破,这一点研究界也有目共睹。(工业界研究推动学术发展)同样也是很好的一个模式,我认为,将来工业界和高校的合作趋势也可以取得这样的一个成功。

3.现在云计算已经将计算力提升到一个以前不敢想象的高度,甚至已经远远高于样本的获取能力。那么构建样本会成为未来的研究重点吗?

数据其实是一个很大的问题,也牵扯到很多方面。我的一个考虑是,今天应用的比较成功的领域,包括图像和语音方面,实际上这些是属于非专业知识的数据,随便请一个人,一个普通人,就可以对图像或者语音进行标注。这类问题当然也有应用,但有很多相当一大类数据是属于专业数据,比如说医疗数据,这些只能让医生进行标注,它的成本实际上是很高的。

4.  此前与其它老师交流的时候,他们提及高校研究的数据量不够大的问题。那么从您个人的研究经验来看,数据对于算法而言处于怎样的地位?

我认为主要有两个方面。一种是应用,关注的是系统的最终性能,而数据对后者的影响是巨大的。当然高校是完全无法和企业相提并论的。但高校更重要的一个任务是,我能不能去设计新的更好的算法。我们并不是只停留在 Deep Learning 这样的算法上,就像我在演讲中提到的那样,也许两三年后,Deep Learning 也许就不是最好的,这完全有可能。那么这个新的算法该由谁来提供?我想这应该是高校教师的职责,是他的本职工作,researcher 就应该做这样的事情。所以我提出一个新的算法,未必要等到手里有巨大的数据量才开始做研究。

关于王教授及其他教授的主题报告,敬请期待雷锋网(公众号:雷锋网)的后续报道。

本文作者:奕欣

本文转自雷锋网禁止二次转载,原文链接

相关文章
|
4月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
97 2
|
5月前
|
数据采集 机器学习/深度学习 算法
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
202 4
|
6月前
|
人工智能 算法 新能源
琶洲算法大赛首场高校巡回赛中山大学站圆满收官
近日,琶洲算法大赛高校巡回赛全国首站在中山大学珠海校区圆满收官。琶洲算法大赛定位为国际性算法领域权威赛事,旨在推动人工智能技术创新与产业融合‌,举办三届以来,琶洲已经评选出41位琶洲领军算法师,落地人才团队170个,极大程度扩充丰富了本地算法人才数量和层级。
76 2
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
65 4
|
3月前
|
机器学习/深度学习 算法
基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法matlab仿真
本项目实现基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法的MATLAB仿真,对比SVM和GWO-SVM性能。算法结合差分进化(DE)与灰狼优化(GWO),优化SVM参数以提升复杂高维数据预测能力。核心流程包括DE生成新种群、GWO更新位置,迭代直至满足终止条件,选出最优参数组合。适用于分类、回归等任务,显著提高模型效率与准确性,运行环境为MATLAB 2022A。
|
3月前
|
数据采集 算法 数据可视化
DROPP算法详解:专为时间序列和空间数据优化的PCA降维方案
DROPP(Dimensionality Reduction for Ordered Points via PCA)是一种专为有序数据设计的降维方法,通过结合协方差分析与高斯核函数调整,有效融入数据顺序特性。本文详细解析了DROPP的理论基础、实现步骤及其应用。算法核心在于利用相邻元素间的相似性特征,关注局部邻域信息以降低噪声影响,适用于时间序列或空间序列数据。文中通过模拟数据示例展示了算法的具体实现过程,并总结了其在气候研究和分子动力学等领域的广泛应用潜力。
119 0
DROPP算法详解:专为时间序列和空间数据优化的PCA降维方案
|
3月前
|
传感器 数据采集 人工智能
AI是如何收集体育数据的?从摄像头到算法,揭秘赛场背后的“数字间谍网“!
⚽ 你是否好奇:AI如何知道哈兰德每秒跑多快?教练的平板为何比裁判还清楚谁偷懒?本文揭秘AI收集体育数据的“黑科技”:视觉追踪、传感器网络、数据清洗与高阶分析。从高速摄像机捕捉梅西肌肉抖动,到GPS背心记录姆巴佩冲刺速度;从表情识别判断装伤,到量子计算模拟战术可能,AI正让体育更透明、精准。未来已来,2030年世界杯或将实现AI替代球探、裁判甚至教练!你认为AI数据收集算侵犯隐私吗?最想统计哪些奇葩指标?留言互动吧!
|
6月前
|
人工智能 编解码 算法
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
310 5
|
6月前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
198 14
|
7月前
|
存储 监控 算法
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
101 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨

热门文章

最新文章