标签
PostgreSQL , GIS , PostGIS , Greenplum , 空间检索 , GiST , B-Tree , geohash
背景
可以支持空间检索的GiST索引的数据结果到底是什么样的呢?
本文为以下两篇文档的增补:
《Greenplum 空间(GIS)数据检索 B-Tree & GiST 索引实践 - 阿里云HybridDB for PostgreSQL最佳实践》
《PostGIS空间索引(GiST、BRIN、R-Tree)选择、优化 - 阿里云RDS PostgreSQL最佳实践》
GiST索引的构造
我们可以用空间的思想来理解它,比如我在这篇文档中讲解了为什么我们需要通过数据规整来提高geohash b-tree的检索效率。
《Greenplum 空间(GIS)数据检索 B-Tree & GiST 索引实践 - 阿里云HybridDB for PostgreSQL最佳实践》
因为这样可以让每个heap block的bound box(包含这个HEAP BLOCK中所有空间的最小BOX, 平面对象。如果是多维对象,使用多维对象的立体BOX或者多维BOX表示。)尽量的缩小,同时让不同heap block之间的边界更加的清晰,重叠少。从而提高空间数据检索的过滤性。
实际上GiST索引思想与之类似,只不过它不是通过编排HEAP BLOCK来实现这一的划清边界的,而是通过R-Tree结构来表示的。这一的话,用户在写入数据时,对应的空间对象写到哪个GiST索引分支就非常的明朗。(当然,GiST索引和其他索引一样,随着数据的写入会出现SPLIT的需求。)
GiST索引对写入性能的影响(时间越小越好)
postgres=# create unlogged table test_gist (pos geometry);
CREATE TABLE
postgres=# create index idx_test_gist_1 on test_gist using gist (pos);
CREATE INDEX
postgres=# insert into test_gist select st_setsrid(st_makepoint(random()*360-180, random()*180-90), 4326) from generate_series(1,5000000);
INSERT 0 5000000
Time: 67127.758 ms
postgres=# drop index idx_test_gist_1 ;
DROP INDEX
Time: 1056.465 ms
postgres=# create index idx_test_gist_1 on test_gist using gist (pos);
CREATE INDEX
Time: 58945.677 ms
B-Tree索引对写入的性能影响(时间越小越好)
postgres=# create unlogged table test_btree (pos geometry);
CREATE TABLE
postgres=# create index idx_test_btree_1 on test_btree using btree(st_geohash(pos,11));
CREATE INDEX
postgres=# insert into test_btree select st_setsrid(st_makepoint(random()*360-180, random()*180-90), 4326) from generate_series(1,5000000);
INSERT 0 5000000
Time: 30199.098 ms
postgres=# drop index idx_test_btree_1 ;
DROP INDEX
Time: 50.565 ms
postgres=# create index idx_test_btree_1 on test_btree using btree(st_geohash(pos,11));
CREATE INDEX
Time: 7746.942 ms
BRIN索引对写入性能的影响(时间越小越好)
postgres=# create unlogged table test_brin (pos geometry);
CREATE TABLE
postgres=# create index idx_test_brin_1 on test_brin using brin(pos);
CREATE INDEX
postgres=# insert into test_brin select st_setsrid(st_makepoint(random()*360-180, random()*180-90), 4326) from generate_series(1,5000000);
INSERT 0 5000000
Time: 7476.996 ms
postgres=# drop index idx_test_brin_1 ;
DROP INDEX
Time: 1.604 ms
postgres=# create index idx_test_brin_1 on test_brin using brin(pos);
CREATE INDEX
Time: 1697.741 ms
GiST实际上是一个通用的索引框架,支持多种数据类型
不仅仅空间类型,更多复杂的类型GiST或者SP-GiST索引也支持。
小结
GiST直接构建在空间列上,对性能影响最大。
Btree直接构建在空间列上,使用表达式(st_geohash)构建btree索引,对性能影响较小。
BRIN直接构建在空间列上,对性能影响最小。
参考
《Greenplum 空间(GIS)数据检索 B-Tree & GiST 索引实践 - 阿里云HybridDB for PostgreSQL最佳实践》
《PostGIS空间索引(GiST、BRIN、R-Tree)选择、优化 - 阿里云RDS PostgreSQL最佳实践》