还在费心学编程?微软用深度学习 AI 帮你写代码

简介:

还在费心学编程?微软用深度学习 AI 帮你写代码

在过去的几十年中,无论在硬件组织还是软件架构上,计算机行业已经发生了翻天覆地的变化,各种软硬件产品的性能和用户体验均得到了显著提升。

但对程序员而言,软件编码的本质似乎并没有什么本质的改变:无论哪种编程语言,仍然需要程序员根据算法逻辑和实现步骤一步一步地手动敲入代码。虽然近几年随着编码工具的改进和编程语言的版本更新,对于程序员而言,这一过程已经相当方便了,但学习如何编程仍然是诸多计算机用户不得不面对的一道难题。

雷锋网消息,近日,微软在论文中公布了一项最新的代码合成系统:RobustFill。它基于深度学习技术,可以根据用户指定的输入输出样例进行特征提取,然后自动合成能够实现相应功能的软件代码,大大缩减了程序员的编码工作量。

举例来说,假设用户需要编码实现如下功能:将输入的人名信息进行规范化缩写后输出。具体如下图所示,当输入人名为 “jacob daniel devlin” 时,系统应该输出 “Declin,J” 。基于 RobustFill,用户只需要提供一些简单的输入输出样例(图中前三行黑色字体),系统就能自动合成实现这一功能的软件代码,并输出正确结果(图中后三行灰色字体)。如果用户需要处理的人名有成千上万个,这就能节约大量的处理时间。

还在费心学编程?微软用深度学习 AI 帮你写代码

RobustFill 系统生成的代码基于 DSL(Domain Specific Language),即领域特定语言。雷锋网获知,用户并不需要理解 DSL 的编程细节,实际上,用户根本看不到 DSL 代码,而只需要关注具体的功能实现就行了。对应上述人名缩写样例,RobustFill 生成的 DSL 代码如下所示:


Concat(
  ToCase(
      GetToken(
          input,
          Type=Word,
          Index=-1),
      Type=Proper),
  Const(", "),
  ToCase(
      SubString(
        GetToken(
            input,
            Type=Word,
            Index=1),
        Start=0,
        End=1),
      Type=Proper),
  Const("."))
AI 代码解读


自动代码合成的难点主要有两个:

  • 一是系统可以自动合成万亿级的不同的 DSL 代码组合,如何判断哪一种是正确结果;

  • 二是用户提供的输入输出样例一般都是人工输入,难免会出现一些笔误(例如上面人名缩写的例子中,表格第二行,用户把“Useato”写成了“uesato”),系统如何避免这些笔误的不良影响。

针对这两个问题,此前的解决方案是微软 Excel 软件中的 FlashFill 系统。该系统凭借开发人员手动设置规则和启发式搜索(Heuristic Search)的方式,为用户输出特定功能的代码。但 FlashFill 系统严重弱化了 DSL 语言的扩展能力,并且需要开发者大量的人工输入,同时对人工输入的笔误也非常敏感,因此并不是最优的解决方案。

与 FlashFill 不同,在深度学习技术的支持下,RobustFill 可以利用数据驱动的方式进行代码合成,而无需开发者手动设置规则。此外,RobustFill 还使用了此前用于自然语言翻译的一种名为“attentional sequence-to-sequence neural network”(注意力序列到序列神经网络)的技术,因此才能基于用户给定的输入输出样例,自动合成代码。RobustFill 的大体结构流程如下图所示。

还在费心学编程?微软用深度学习 AI 帮你写代码


微软用数百万随机生成输入/输出和对应的编码来训练该系统。由于 RobustFill 能学会 DSL 的语法,微软认为它在真实数据上会有良好表现。雷锋网(公众号:雷锋网)了解到,总的来说,微软 RobustFill 在真实测试中达到了 92% 的精确度。最让人感到鼓舞的是,即便输入/输出样例包含大量噪音,RobustFill 仍能够保持高水准的精确度。

意义

在 FlashFill DSL 这样的强大函数语言上,成功地训练神经架构学习编程,是神经代码合成的一项了不起的成就。微软表示,这同时也是迈向通用 AI 的一小步。RobustFill 解决了加入可编译性( interpretability)的核心难题,并探索了用知识的符号表示连接分布式表达( connecting distributed representations with symbolic representations of knowledge)这一课题。

微软最后在官方博客宣布:

“我们正在开发这些架构的扩展,用变量和控制流来学习 DSL 中的代码,以生成更丰富的代码类。我们相信,照这个方向走下去需要我们研究、解决代码合成和归纳问题中的关键技术难关。”

via microsoft





本文作者:恒亮
本文转自雷锋网禁止二次转载, 原文链接
目录
打赏
0
0
0
0
26198
分享
相关文章
TDengine 发布时序数据分析 AI 智能体 TDgpt,核心代码开源
2025 年 3 月 26 日,涛思数据通过线上直播形式正式发布了其新一代时序数据分析 AI 智能体——TDgpt,并同步开源其核心代码(GitHub 地址:https://github.com/taosdata/TDengine)。这一创新功能作为 TDengine 3.3.6.0 的重要组成部分,标志着时序数据库在原生集成 AI 能力方面迈出了关键一步。
37 0
2025自学编程实操指南第一课面向AI编程
2025自学编程实操指南第一课面向AI编程,第一个实践案例:贪吃蛇游戏
AutoAgent:无需编程!接入DeepSeek用自然语言创建和部署AI智能体!港大开源框架让AI智能体开发变成填空题
香港大学推出的AutoAgent框架通过自然语言交互实现零代码创建AI智能体,支持多模型接入与自动化工作流编排,在GAIA基准测试中表现优异。
67 16
AutoAgent:无需编程!接入DeepSeek用自然语言创建和部署AI智能体!港大开源框架让AI智能体开发变成填空题
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
55 28
最新AI大模型数据集解决方案:分享两种AI高质量代码数据集生产方案
本文分享了两种构建高质量AI代码数据集的解决方案。第一种是传统方式,结合动态住宅代理与手动处理,通过分页读取和数据清洗生成结构化数据;第二种是利用Web Scraper API工具,实现自定义配置、自动化抓取及云端存储。两种方法各具优势,适合不同需求和技术水平的团队。同时,文章还提供了专属优惠福利,助力提升数据采集效率,为AI大模型训练提供支持。
61 5
最新AI大模型数据集解决方案:分享两种AI高质量代码数据集生产方案
Crack Coder:在线面试“AI外挂”!编程问题秒出答案,完全绕过屏幕监控,连录屏都抓不到痕迹!
Crack Coder 是一款开源的隐形 AI 辅助工具,专为技术面试设计,支持多种编程语言,提供实时编程问题解决方案,帮助面试者高效解决问题。
87 14
|
20天前
|
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
31 4
通义灵码 AI 程序员与开发者结伴编程,全栈开发电商工程的前后端功能需求
当你又收到了项目新需求的时候,可以尝试下载并使用通义灵码,让通义灵码 AI 程序员跟你一起结伴编程,它具备多文件代码修改和工具使用的能力,可以与你结伴协同完成编码任务,如需求实现、缺陷修复、单元测试生成、批量代码修改等,成为你的左膀右臂。下面我们就跟AI程序员结伴编程完成前后端需求的开发吧!
140 0
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
125 22
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
287 6

雷锋网

+ 订阅

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等