肽积木用 AI 辅助医生「看片」, 诊断糖网病速度提升 20 倍

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

雷锋网(公众号:雷锋网)【新智造】按:过去的两年里,采用 AI 技术的医疗创业公司大量涌现。 调研公司 CB Insights 今年跟踪报道了 106 家主打 AI 技术的医疗公司,报道指出医疗 AI 已实现辅助诊断,慢性病管理和制药等领域潜力巨大。雷锋网也曾报道国内一些基于 AI 技术的医疗创业公司,此次,作为「新智造成长榜 2017」的参与者,我们采访了以 AI 辅助医疗影像诊断的新型创业公司肽积木,通过其创始人柏文洁,主要讲述了该公司在技术和产品等方面的发展情况。

肽积木用 AI 辅助医生「看片」, 诊断糖网病速度提升 20 倍

肽积木创始人柏文洁

柏文洁是一名大数据领域的连续创业者,曾是大数据公司信柏科技和时趣互动运营核心创始成员,在大数据、人工智能产品、运营和推广等业务环节都具有丰富经验。

因为之前一直在做大数据,而从大数据转到人工智能其实是比较自然的过程。但大数据在分析过程中,应用点还是显得比较单薄一点,而人工智能它可能在更大程度上能够落到一个结论层面。所以我们在这个点上想用人工智能和医疗来做结合,来看看具体的应用场景到底是什么样。

将 AI 与医疗结合的创业项目林林总总,但成立于 2016 年 7 月的肽积木却选择了从对糖网病的眼底阅片切入,以人工智能辅助医学影像诊断。其实,Google 旗下人工智能子公司 DeepMind 也将人工智能的触角伸到了医疗层面,其首先选择的领域就是糖网病的筛查。而在国内,也有不少于 10 家创业公司在糖网病的筛查诊断上有所布局。

据世界卫生组织(WHO)的报告,中国约 5 亿人成年人处于糖尿病前期,糖尿病患者约有 1.1 亿人,约 1/3 糖尿病患者(约 3700 万)患有糖尿病视网膜病变(简称「糖网病」),其中有1/3(约 1200 万)面临失明的风险。而另一方面,中国医疗资源的匮乏,使得基层社区甚至没有眼底设备进行筛查。这也是柏文洁选择介入这个庞大市场的原因,他们的目标就是要提高医生效率,同时平衡医疗资源。

肽积木用 AI 辅助医生「看片」, 诊断糖网病速度提升 20 倍

在技术层面上,肽积木将深度学习技术应用于医疗影像识别。他们独创了 PL-NET(基于局部信息的深度识别网络)算子,将深度网络应用于病灶识别标记、病程判断及病理分析中。具体技术优势主要体现在以下几个方面:

  • 速度快。医生读片一般需要 3-5 分钟,而肽积木利用 AI 技术在 13-15 秒就可以完成一张眼底图片的病灶标记。整体上包括病例生成、病灶判断和分级都不超过 30 秒,能够最大限度提升医生的效率。

  • 稳定性好。机器在阅读眼底图片时具有一定的识别性,实际场景应用在某种程度可能会超过医生。

  • 准确率高。在特定数据集上的准确度超过 97%。

雷锋网新智造了解到,肽积木通过与医院及医疗机构合作,已累积获得超过 20 万张标准医学影像,其中包括眼底照片、X 光、CT 和深度脱敏诊断结果。下一步肽积木会将人工智能辅助诊断技术应用到 X-光胸片和胸部 CT 等更多领域。

产品方面,肽积木推出了人工智能辅助阅读医疗影像平台,构建了医疗大数据人工智能训练平台。此外,面向 C 端客户的人工智能眼底读片 APP 也已经正式上线。

医疗影像诊断机器人是一款面向不同医疗机构的低成本高效辅助阅片工具,利用人工智能技术,可实现秒级精准阅片,并可根据影像结论实现疾病诊断、分级诊断、病灶标识、病例自动生成、治疗方案建议及病情发展预测等全环节的诊疗辅助工作。

医疗大数据人工智能训练平台,包含数据的整合清洗、标记平台的标记、机器人快速训练和标准接口应用四大模块。在实现对医疗影像及标注数据的高质量采集的同时,可开放给从业医生进行数据标注并训练成辅助诊断的机器人,辅助科研成果形成。

面向 C 端客户的 APP——Doce 糖尿病自查利器,病人可以根据自己在医院进行相应检查得到的图像,上传至肽积木的 APP,从而快速获得患病等级及病灶分析,即获得第二诊断意见。柏文洁曾在雷锋网硬创公开课上表示,肽积木使用的数据基本都由三甲医院提供,机器的准确率基本上能持平顶尖医生。

肽积木用 AI 辅助医生「看片」, 诊断糖网病速度提升 20 倍

柏文洁解释说,肽积木推出 APP 主要是为了获取用户,提高知名度。「至少在这个领域内,在 C 端我们是第一家能够推出人工智能 APP 来做第二诊断意见的公司」。

不过,考虑到糖尿病患者大多是中老年群体,为给用户提供便捷服务,目前他们获取 C 端用户的方式更多围绕公众号进行。通过在社区医院做免费的联合眼底筛选活动进行线下推广,这在一定程度上也加大了工作量,效率也不是很高。对此,柏文洁表示,「AI 还真得落地,我们不能飘在天上,这在逻辑上不太可行。我们宁可去做重一点,做一些线下(推广)的事情。」

由此,可以看出肽积木采用的是 B+C 的商业模式,在 C 端,他们通过收费服务向用户提供诊断意见。而在 B 端,已经与 20 多家三甲医院和基层医疗机构进行了合作。肽积木希望打通整个医疗环节,能够帮助医院来进行分级诊疗,提升整个医疗系统的运转效率。

我们的远景其实特别简单,就是希望利用人工智能技术能够平衡医疗资源,而不仅是提升医生效率。尤其在基层或者社区,那里其实并没有足够好的资源。我们可以通过 AI 学习三甲医院的技术,哪怕学到 80% 都能够帮助到糖尿病患者,把分级诊疗真正做好。或者说,让普通的病人不需要去三甲医院排队,就能够享受到我们的优质服务。

目前,肽积木团队 10 人左右,公司核心团队的大数据行业平均经验超过 3 年。在营收方面,他们希望今年达到盈亏平衡。今年 4 月,肽积木获得了某医药集团的数百万天使投资,新一轮融资也已启动。

雷锋网正在启动“新智造成长榜2017”评选活动,我们将对人工智能与机器人行业进行大规模报道、梳理和调研,并联合数十家著名投资机构根据这些创新公司的技术实力、商业能力和成长性进行深度评选,最终从多个领域分别选出一些极具潜力成长性的创新公司。如果你想参与我们的评选,可点击「报名」链接,或通过邮箱xinzhizao@leiphone.com联系我们!


本文作者:王金许

本文转自雷锋网禁止二次转载,原文链接


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
AI与未来医疗:革命性的诊断与治疗
本文探讨了人工智能在医疗领域的应用及其对未来医疗保健的潜在影响。通过分析当前AI技术的发展,特别是在疾病诊断、个性化治疗和患者护理方面的应用,揭示了AI如何提高医疗服务效率、准确性和可及性。同时,讨论了AI技术面临的伦理和隐私挑战,为未来医疗保健的发展方向提供了思考。
|
12天前
|
机器学习/深度学习 人工智能 监控
AI与未来医疗:革命性的诊断与治疗
【10月更文挑战第11天】 本文探讨了人工智能(AI)在现代医疗领域的应用,重点分析了AI如何通过精确的数据分析和机器学习技术,实现疾病的早期诊断和个性化治疗方案。通过具体案例展示了AI在医学影像分析、基因编辑、远程医疗及患者管理等方面的巨大潜力。同时,也讨论了AI在医疗中面临的伦理和隐私挑战,并提出了可能的解决方案。
|
14天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗诊断中的应用与未来发展趋势分析
【10月更文挑战第9天】 本文深入探讨了人工智能(AI)在医疗诊断领域的现状及其应用,包括影像识别、临床数据处理及个性化治疗方案的制定。通过具体案例分析,展示了AI技术如何提高诊断准确性、缩短诊断时间,并减轻医生的工作负担。同时,本文还讨论了AI在医疗诊断中面临的伦理问题和法律障碍,以及解决这些问题的可能途径。最后,对AI在未来医疗行业中的发展潜力进行了展望,指出其在提升医疗服务质量和效率方面的巨大潜力。
30 2
|
21天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第2天】本文深入探讨了人工智能技术在医疗诊断领域的应用,以及其带来的变革。通过分析AI技术的工作原理和实际应用案例,揭示了AI在提高诊断准确率、优化治疗流程等方面的巨大潜力。同时,文章也指出了AI在医疗领域面临的伦理、法律和技术等挑战,并讨论了未来可能的发展方向。
38 7
|
21天前
|
机器学习/深度学习 人工智能 TensorFlow
AI技术在医疗诊断中的应用与挑战
【10月更文挑战第2天】本文将探讨AI技术在医疗诊断领域的应用及其带来的挑战。我们将通过实际案例和代码示例,展示AI如何帮助医生更准确地诊断疾病,并讨论其面临的伦理和法律问题。
22 4
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在医疗诊断中的应用与挑战
人工智能(AI)在医疗领域展现出巨大潜力,尤其在医疗诊断中。本文将探讨AI如何通过深度学习、计算机视觉等技术辅助医生进行疾病诊断,提高准确性和效率。同时,分析当前面临的数据隐私、算法透明度以及监管等问题,并提出可能的解决方案。最后,讨论AI在未来医疗中的前景,强调其在个性化治疗和远程医疗中的潜在应用。
|
2天前
|
人工智能 自然语言处理 IDE
CodeFuse IDE 0.6 版本发布,支持编辑器诊断问题 AI 修复
CodeFuse IDE 是基于蚂蚁自研大模型和 OpenSumi 框架的 AI 编程助手,支持多语言,提供代码建议、解释、测试生成等,增强开发效率。最新版增加 AI 修复和智能补全功能,开源并支持 VS Code 插件生态。[了解更多](https://github.com/codefuse-ai/codefuse-ide)
12 0
|
27天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗诊断中的应用
【9月更文挑战第35天】本文将探讨人工智能(AI)如何在医疗诊断中发挥作用,提高医生的诊断效率和准确性。我们将通过实例来展示AI如何帮助医生进行疾病预测、影像诊断和个性化治疗。同时,我们也将讨论AI在医疗诊断中面临的挑战和未来的发展。
25 2
|
1月前
|
机器学习/深度学习 人工智能 算法
AI辅助医疗影像:提高诊断准确性
【10月更文挑战第2天】医学影像技术是现代医学诊断的关键手段,但传统方法依赖医生经验,存在误诊风险。AI辅助医疗影像通过自动化图像识别、疾病预测和辅助诊断决策,显著提升了诊断准确性与效率。利用深度学习、数据增强及迁移学习等技术,AI不仅能快速分析影像,还能提供个性化诊疗建议,并实时监测疾病变化。尽管面临数据质量、算法可解释性和伦理法律等挑战,但多模态影像分析、跨学科合作及VR融合等趋势将推动AI在医疗影像领域的广泛应用,助力实现更精准、高效的医疗服务。
|
16天前
|
人工智能 搜索推荐 算法
探索AI技术在医疗诊断中的应用与挑战
【10月更文挑战第7天】 人工智能(AI)在医疗领域的应用日益广泛,尤其在医疗诊断中表现出巨大的潜力和价值。本文将探讨AI在医疗诊断中的具体应用、所面临的伦理和隐私问题以及未来的发展方向,旨在为读者提供一个全面而深入的理解。
26 0