AI领域三大范式的发展简史

简介:

雷锋网(公众号:雷锋网)按:本文作者Tomasz Malisiewicz,CMU博士。主要介绍了AI领域的三大范式:逻辑学,概率方法和深度学习。

今天,我们一起来回顾过去50年人工智能(AI)领域形成的三大范式:逻辑学、概率方法和深度学习。如今,无论依靠经验和“数据驱动”的方式,还是大数据、深度学习的概念,都已经深入人心,可是早期并非如此。很多早期的人工智能方法是基于逻辑,并且从基于逻辑到数据驱动方法的转变过程受到了概率论思想的深度影响,接下来我们就谈谈这个过程。

本文按时间顺序展开,先回顾逻辑学和概率图方法,然后就人工智能和机器学习的未来走向做出一些预测。

AI领域三大范式的发展简史

图1:图片来源Coursera的概率图模型课

一、逻辑和算法(常识性的“思考”机)

许多早期的人工智能工作都是关注逻辑、自动定理证明和操纵各种符号。John McCarthy于1959年写的那篇开创性论文取名为《常识编程》也是顺势而为。

如果翻开当下最流行的AI教材之一——《人工智能:一种现代方法》(AIMA),我们会直接注意到书本开篇就是介绍搜索、约束满足问题、一阶逻辑和规划。第三版封面(见下图)像一张大棋盘(因为棋艺精湛是人类智慧的标志),还印有阿兰·图灵(计算机理论之父)和亚里士多德(最伟大的古典哲学家之一,象征着智慧)的照片。

AI领域三大范式的发展简史

图2:AIMA 的封面,它是CS专业本科AI课程的规范教材

然而,基于逻辑的AI遮掩了感知问题,而我很早之前就主张了解感知的原理是解开智能之谜的金钥匙。感知是属于那类对于人很容易而机器很难掌握的东西。(延伸阅读:《计算机视觉当属人工智能》,作者2011年的博文)逻辑是纯粹的,传统的象棋机器人也是纯粹算法化的,但现实世界却是丑陋的,肮脏的,充满了不确定性。

我想大多数当代人工智能研究者都认为基于逻辑的AI已经死了。万物都能完美观察、不存在测量误差的世界不是机器人和大数据所在的真实世界。我们生活在机器学习的时代,数字技术击败了一阶逻辑。站在2015年,我真是替那些死守肯定前件抛弃梯度下降的傻子们感到惋惜。

逻辑很适合在课堂上讲解,我怀疑一旦有足够的认知问题成为“本质上解决”,我们将看到逻辑学的复苏。未来存在着很多开放的认知问题,那么也就存在很多场景,在这些场景下社区不用再担心认知问题,并开始重新审视这些经典的想法。也许在2020年。

二、概率,统计和图模型(“测量”机)

概率方法在人工智能是用来解决问题的不确定性。《人工智能:一种现代方法》一书的中间章节介绍“不确定知识与推理”,生动地介绍了这些方法。如果你第一次拿起AIMA,我建议你从本节开始阅读。如果你是一个刚刚接触AI的学生,不要吝啬在数学下功夫。

AI领域三大范式的发展简史

图3:来自宾夕法尼亚州立大学的概率论与数理统计课程的PDF文件

大多数人在提到的概率方法时,都以为只是计数。外行人很容易想当然地认为概率方法就是花式计数方法。那么我们简要地回顾过去统计思维里这两种不相上下的方法。

频率论方法很依赖经验——这些方法是数据驱动且纯粹依靠数据做推论。贝叶斯方法更为复杂,并且它结合数据驱动似然和先验。这些先验往往来自第一原则或“直觉”,贝叶斯方法则善于把数据和启发式思维结合做出更聪明的算法——理性主义和经验主义世界观的完美组合。

最令人兴奋的,后来的频率论与贝叶斯之争,是一些被称为概率图模型的东西。该类技术来自计算机科学领域,尽管机器学习现在是CS和统计度的重要组成部分,统计和运算结合的时候它强大的能力才真正释放出来。

概率图模型是图论与概率方法的结合产物,2000年代中期它们都曾在机器学习研究人员中风靡一时。当年我在研究生院的时候(2005-2011),变分法、Gibbs抽样和置信传播算法被深深植入在每位CMU研究生的大脑中,并为我们提供了思考机器学习问题的一个极好的心理框架。我所知道大部分关于图模型的知识都是来自于Carlos Guestrin和Jonathan Huang。Carlos Guestrin现在是GraphLab公司(现改名为Dato)的CEO,这家公司生产大规模的产品用于图像的机器学习。Jonathan Huang现在是Google的高级研究员。

下面的视频尽管是GraphLab的概述,但它也完美地阐述了“图形化思维”,以及现代数据科学家如何得心应手地使用它。Carlos是一个优秀的讲师,他的演讲不局限于公司的产品,更多的是提供下一代机器学习系统的思路。

AI领域三大范式的发展简史

(图4:概率图模型的计算方法介绍| Dato CEO,Carlos Guestrin教授)

如果你觉得深度学习能够解决所有机器学习问题,真得好好看看上面的视频。如果你正在构建一套推荐系统,一个健康数据分析平台,设计一个新的交易算法,或者开发下一代搜索引擎,图模型都是完美的起点。

三、深度学习和机器学习(数据驱动机)

机器学习是从样本学习的过程,所以当前最先进的识别技术需要大量训练数据,还要用到深度神经网络和足够耐心。深度学习强调了如今那些成功的机器学习算法中的网络架构。这些方法都是基于包含很多隐藏层的“深”多层神经网络。注:我想强调的是深层结构如今(2015年)不再是什么新鲜事。只需看看下面这篇1998年的“深层”结构文章。

AI领域三大范式的发展简史

图5:LeNet-5,Yann LeCun开创性的论文《基于梯度学习的文档识别方法》

你在阅读LeNet模型导读时,能看到以下条款声明:

要在GPU上运行这个示例,首先得有个性能良好的GPU。GPU内存至少要1GB。如果显示器连着GPU,可能需要更多内存。

当GPU和显示器相连时,每次GPU函数调用都有几秒钟的时限。这么做是必不可少的,因为目前的GPU在进行运算时无法继续为显示器服务。如果没有这个限制,显示器将会冻结太久,计算机看上去像是死机了。若用中等质量的GPU处理这个示例,就会遇到超过时限的问题。GPU不连接显示器时就不存在这个时间限制。你可以降低批处理大小来解决超时问题。

我真的十分好奇Yann究竟是如何早在1998年就把他的深度模型折腾出一些东西。毫不奇怪,我们大伙儿还得再花十年来消化这些内容。

更新:Yann说(通过Facebook的评论)ConvNet工作可以追溯到1989年。“它有大约400K连接,并且在一台SUN4机器上花了大约3个星期训练USPS数据集(8000个训练样本)。”——LeCun

AI领域三大范式的发展简史

图6:深度网络,Yann1989年在贝尔实验室的成果

注:大概同一时期(1998年左右)加州有两个疯狂的家伙在车库里试图把整个互联网缓存到他们的电脑(他们创办了一家G打头的公司)。我不知道他们是如何做到的,但我想有时候需要超前做些并不大规模的事情才能取得大成就。世界最终将迎头赶上的。

结论:

我没有看到传统的一阶逻辑很快卷土重来。虽然在深度学习背后有很多炒作,分布式系统和“图形思维”对数据科学的影响更可能比重度优化的CNN来的更深远。深度学习没有理由不和GraphLab-style架构结合,未来几十年机器学习领域的重大突破也很有可能来自这两部分的结合。

雷锋网注:文章由阅面科技翻译并授权雷锋网发布,如需转载请联系授权并保留出处和作者,不得删减内容。


本文作者:赵京雷


本文转自雷锋网禁止二次转载,原文链接

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
1月前
|
存储 机器学习/深度学习 算法
​​LLM推理效率的范式转移:FlashAttention与PagedAttention正在重塑AI部署的未来​
本文深度解析FlashAttention与PagedAttention两大LLM推理优化技术:前者通过分块计算提升注意力效率,后者借助分页管理降低KV Cache内存开销。二者分别从计算与内存维度突破性能瓶颈,显著提升大模型推理速度与吞吐量,是当前高效LLM系统的核心基石。建议收藏细读。
453 125
|
24天前
|
消息中间件 人工智能 运维
事件驱动重塑 AI 数据链路:阿里云 EventBridge 发布 AI ETL 新范式
“一个简单的数据集成任务,开始时总是轻松愉快的,但随着业务扩展,数据源越来越多,格式越来越乱,整个数据链路就会变得一团糟。”陈涛在演讲中指出了当前 AI 数据处理的普遍困境。扩展难、运维难、稳定性差,这三大挑战已成为制约 AI 应用创新和落地的关键瓶颈。针对这些痛点,在2025云栖大会期间,阿里云重磅发布了事件驱动 AI ETL 新范式,其核心产品 EventBridge 通过深度集成 AI 能力,为开发者提供了一套革命性的解决方案,旨在彻底改变 AI 时代的数据准备与处理方式。
229 13
|
5月前
|
云安全 人工智能 安全
|
3月前
|
机器学习/深度学习 人工智能 编解码
智谱AI发布新版VLM开源模型GLM-4.1V-9B-Thinking,引入思考范式,性能提升8倍
视觉语言大模型(VLM)已经成为智能系统的关键基石。
829 0
|
5月前
|
人工智能 JavaScript Devops
云效 MCP Server:AI 驱动的研发协作新范式
云效MCP Server是阿里云云效平台推出的模型上下文协议(Model Context Protocol)标准化接口系统,作为AI助手与DevOps平台的核心桥梁。通过该协议,AI大模型可无缝集成云效DevOps平台,直接访问和操作包括项目管理、代码仓库、工作项等关键研发资产,实现智能化全生命周期管理。其功能涵盖代码仓库管理、代码评审、项目管理和组织管理等多个方面,支持如创建分支、合并请求、查询工作项等具体操作。用户可通过通义灵码内置的MCP市场安装云效MCP服务,并配置个人访问令牌完成集成。实际场景中,AI助手可自动分析需求、生成代码、创建功能分支并提交合并请求,极大提升研发效率。
|
7月前
|
机器学习/深度学习 人工智能 数据可视化
生成AI的两大范式:扩散模型与Flow Matching的理论基础与技术比较
本文系统对比了扩散模型与Flow Matching两种生成模型技术。扩散模型通过逐步添加噪声再逆转过程生成数据,类比为沙堡的侵蚀与重建;Flow Matching构建分布间连续路径的速度场,如同矢量导航系统。两者在数学原理、训练动态及应用上各有优劣:扩散模型适合复杂数据,Flow Matching采样效率更高。文章结合实例解析两者的差异与联系,并探讨其在图像、音频等领域的实际应用,为生成建模提供了全面视角。
1049 1
生成AI的两大范式:扩散模型与Flow Matching的理论基础与技术比较
|
1月前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
226 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
FastRead——AI驱动的智能读写生产力引擎,重构信息处理与内容创作新范式
FastRead是一款智能内容处理工具,基于大模型技术,自动解析网页、文档、音频等多源内容,提取关键信息并生成多模态知识卡片。它重构信息处理流程,提升内容创作效率,适用于新闻、金融、教育、营销等多个场景,助力用户高效获取与输出知识。
FastRead——AI驱动的智能读写生产力引擎,重构信息处理与内容创作新范式

热门文章

最新文章