一篇卷积神经网络的编年史

简介:
+关注继续查看

人工神经网络模型整体上的发展过程如下图所示:

一篇卷积神经网络的编年史

一篇卷积神经网络的编年史

上图对比了本文所述的各种神经网络之间,操作复杂度和精度之间的关系。

  LeNet5

1998, Yann LeCun 的 LeNet5。

图像特征分布在整个图像上。 

在具有很少参数的多个位置上提取类似特征时,具有可学习的参数的卷积是个比较有效的方法。 

在没有应用GPU的时候,能够保存参数和计算就成了一个关键优势。 

LeNet5并没有把每个像素都作为大型多层神经网络的一个输入,因为图像是高度空间相关的,如果用了这种方法,就不能很好地利用相关性。

LeNet5 的主要特征:

  • CNN 主要用这3层的序列: convolution, pooling, non-linearity;

  • 用卷积提取空间特征;

  • 由空间平均得到子样本;

  • 用 tanh 或 sigmoid 得到非线性;

  • 用 multi-layer neural network(MLP)作为最终分类器;

  • 层层之间用稀疏的连接矩阵,以避免大的计算成本。

一篇卷积神经网络的编年史

  Dan Ciresan Net

2010, Dan Claudiu Ciresan and Jurgen Schmidhuber 的 Dan Ciresan Net。

是比较早的GPU神经网络之一,在 NVIDIA GTX 280 图形处理器上实现了9层神经网络的前向后向计算。

  AlexNet

2012,Alex Krizhevsky 的 AlexNet。

是LeNet的一个更深和更广的版本,可以用来学习更复杂的对象。

AlexNet 的主要特征:

  • 用rectified linear units(ReLU)得到非线性;

  • 使用辍 dropout 技巧在训练期间有选择性地忽略单个神经元,来减缓模型的过拟合;

  • 重叠最大池,避免平均池的平均效果;

  • 使用 GPU NVIDIA GTX 580 可以减少训练时间,这比用CPU处理快了 10 倍,所以可以被用于更大的数据集和图像上。

一篇卷积神经网络的编年史

  OverFeat

2013年12月,Yann LeCun的纽约大学实验室的 OverFeat。

是AlexNet的衍生,提出了 learning bounding boxes。

  VGG

2015,牛津的 VGG。

率先在每个卷积层中使用更小的 3×3 filters,并将它们组合成卷积序列。

虽然小,但是多个3×3卷积序列可以模拟更大的接收场的效果。

这个想法也在最近的Inception和ResNet网络中有所应用。

  NiN

2014,Min Lin, Qiang Chen, Shuicheng Yan 的 NiN。

它的思想很简单但是很有效,使用1x1卷积给一个卷积层的特征提供了更多的组合性。

每个卷积之后使用空间MLP层,以便在另一层之前更好地组合特征,而没有使用原始像素作为下一层的输入。

可以有效地使用非常少的参数,在这些特征的所有像素之间共享。

一篇卷积神经网络的编年史

  GoogLeNet and Inception

2014,Google Christian Szegedy 的 GoogLeNet and Inception。

在昂贵的并行块之前,使用1×1卷积块(NiN)来减少特征数量,这通常被称为“瓶颈”,可以减少深层神经网络的计算负担。

它用一个没有 inception modules 的 stem 作为初始层。

用类似于NiN的平均池加上softmax分类器。

一篇卷积神经网络的编年史

  Inception V3 (and V2)

2015年2月,Christian 团队的 Inception V2,2015年12月,Inception V3。

在每个池之前,增加 feature maps,构建网络时,仔细平衡深度和宽度,使流入网络的信息最大化。

当深度增加时,特征的数量或层的宽度也有所增加。

在下一层之前,增加每一层的宽度来增多特征的组合性。

尽量只使用3x3卷积。

一篇卷积神经网络的编年史

  ResNet

2015,Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 的 ResNet。

这个网络绕过了2层,可以被看作一个小的分类器,或者一个NiN 。

这也是第一次训练了大于100甚至1000层的网络。 

在每一层,通过使用更小output的1x1卷积来减少特征的数量,然后经过一个3x3 层,接着又是一个1x1卷积,这个方法可以保持少计算量,同时提供丰富的特征组合。

一篇卷积神经网络的编年史

  Xception

2016,François Chollet 的 Xception。

这个网络和 ResNet and Inception V4 一样有效,而且用了更简单优雅的结构 。

它有36个卷积阶段,和ResNet-34相似,不过模型和代码和ResNet一样简单,并且比Inception V4更易理解 。

这个网络在 Torch7/Keras / TF 都已经可以应用了。

一篇卷积神经网络的编年史

英文参考:

http://t.cn/R6V1ELT




====================================分割线================================


本文作者:AI研习社

本文转自雷锋网禁止二次转载,原文链接

目录
相关文章
|
2月前
|
机器学习/深度学习 编解码 算法
ICCV 2023 | 当尺度感知调制遇上Transformer,会碰撞出怎样的火花?
近年来,基于Transformer和CNN的视觉基础模型取得巨大成功。有许多研究进一步地将Transformer结构与CNN架构结合,设计出了更为高效的hybrid CNN-Transformer Network,但它们的精度仍然不尽如意。本文介绍了一种新的基础模型SMT(Scale-Aware Modulation Transformer),它以更低的参数量(params)和计算量(flops)取得了大幅性能的提升。
|
7月前
|
机器学习/深度学习 数据处理 计算机视觉
瞎聊深度学习——卷积神经网络
瞎聊深度学习——卷积神经网络
|
7月前
|
机器学习/深度学习 算法
SpikeGPT项目原作解读:使用脉冲神经网络的生成式语言模型
SpikeGPT项目原作解读:使用脉冲神经网络的生成式语言模型
150 0
|
7月前
|
机器学习/深度学习 算法 异构计算
突破神经网络限制,量子蒙特卡洛研究新进展登Nature子刊
突破神经网络限制,量子蒙特卡洛研究新进展登Nature子刊
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
新型卷积 | 涨点神器!利用Involution可构建新一代神经网络!(文末获取论文与源码)(二)
新型卷积 | 涨点神器!利用Involution可构建新一代神经网络!(文末获取论文与源码)(二)
39 0
|
7月前
|
机器学习/深度学习 编解码 算法
新型卷积 | 涨点神器!利用Involution可构建新一代神经网络!(文末获取论文与源码)(一)
新型卷积 | 涨点神器!利用Involution可构建新一代神经网络!(文末获取论文与源码)(一)
68 0
|
7月前
|
机器学习/深度学习 Web App开发 人工智能
DenseNet共一、CVPR 2017最佳论文得主刘壮博士论文,从另一视角看神经网络架构
DenseNet共一、CVPR 2017最佳论文得主刘壮博士论文,从另一视角看神经网络架构
155 0
|
7月前
|
机器学习/深度学习 量子技术 计算机视觉
CVPR 2022 | 图像也是德布罗意波!华为诺亚&北大提出量子启发MLP,性能超越Swin Transfomer
CVPR 2022 | 图像也是德布罗意波!华为诺亚&北大提出量子启发MLP,性能超越Swin Transfomer
133 0
|
7月前
|
机器学习/深度学习 自然语言处理 并行计算
「稀疏编码」从理论走向实用!马毅教授NeurIPS 2022新作:稀疏卷积性能和稳健性超越ResNet
「稀疏编码」从理论走向实用!马毅教授NeurIPS 2022新作:稀疏卷积性能和稳健性超越ResNet
|
7月前
|
机器学习/深度学习 自然语言处理 算法
「扩散模型」首篇综述!谷歌&北大最新研究
「扩散模型」首篇综述!谷歌&北大最新研究
296 0
推荐文章
更多