训练一个AI给颜值打分,公平公正!

简介:

机器学习是不是很无聊,用来用去都是识别字体。能不能帮我找到颜值高的妹子,顺便提高一下姿势水平。

FaceRank 基于 TensorFlow CNN 模型,提供了一些图片处理的工具集,后续还会提供训练好的模型。给 FaceRank 一个妹子,他给你个分数。

从此以后筛选简历,先把头像颜值低的去掉;自动寻找女主颜值高的小电影;自动关注美女;自动排除负分滚粗的相亲对象。从此以后升职加薪,迎娶白富美,走上人生巅峰。

苍老师镇楼:


训练一个AI给颜值打分,公平公正!

隐私

因为隐私问题,训练图片集并不提供,但是提供了人脸抽取,图片大小归一化工具,稍微可能会放一些卡通图片。

数据集

130 张 128*128 张网络图片,图片名:1-3.jpg 表示 分值为 1 的第 3 张图。 你可以把符合这个格式的图片放在 resize_images 来训练模型。

find_faces_in_picture.py 

find_and_save_face 基于 face_recognition 从图片中找到人脸的坐标,并保存为新图片。

训练一个AI给颜值打分,公平公正!

然后再用 resize 统一为 128×128 大小,为模型训练做准备。

模型

人脸打分基于 TensorFlow 的 CNN 模型 代码参考 : TensorFlow-Examples

卷积神经网络部分代码,网络结构说明:卷积层,池化层,卷积层,池化层,全链接层。

训练一个AI给颜值打分,公平公正!

运行

安装好 TensorFlow 之后,直接运行 train_model.py .

  • 训练模型

  • 保存模型到 model 文件夹

测试

运行完 train_model.py 之后, 直接运行 run_model.py 来测试.

下载

训练好的模型可以在以下网址下载:  http://www.tensorflownews.com/

模型效果

  • 训练过程 你可以看训练过程:Train_Result.md , 这里有损失函数和准确率变化过程。

  • 测试结果 结果并不非常好,但是增加数据集之后有所改善。

(?, 128, 128, 24)
(?, 64, 64, 24)
(?, 64, 64, 96)
(?, 32, 32, 96)

[‘1-1.jpg’, ‘1-2.jpg’, ‘10-1.jpg’, ‘10-2.jpg’, ‘2-1.jpg’, ‘2-2.jpg’, ‘3-1.jpg’, ‘3-2.jpg’, ‘4-1.jpg’, ‘4-2.jpg’, ‘5-1.jpg’, ‘5-2.jpg’, ‘6-1.jpg’, ‘6-2.jpg’, ‘7-1.jpg’, ‘7-2.jpg’, ‘8-1.jpg’, ‘8-2.jpg’, ‘9-1.jpg’, ‘9-2.jpg’]
20
(10, 128, 128, 3)
[3 2 8 6 5 8 0 4 7 7]
(10, 128, 128, 3)
[2 6 6 6 5 8 7 8 7 5]
Test Finished!

支持

  • 提交 issue

Github: https://github.com/fendouai/FaceRank


====================================分割线================================



本文作者:AI研习社

本文转自雷锋网禁止二次转载,原文链接

目录
相关文章
|
1月前
|
机器学习/深度学习 存储 人工智能
【科普向】我们所说的AI模型训练到底在训练什么?
人工智能(AI)模型训练类似于厨师通过反复实践来掌握烹饪技巧。它通过大量数据输入,自动优化内部参数(如神经网络中的权重和偏置),以最小化预测误差或损失函数,使模型在面对新数据时更加准确。训练过程包括前向传播、计算损失、反向传播和更新权重等步骤,最终生成权重文件保存模型参数,用于后续的应用和部署。理解生物神经网络的工作原理为人工神经网络的设计提供了灵感,后者广泛应用于图像识别、自然语言处理等领域。
|
12天前
|
人工智能 物联网 开发者
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
Oumi 是一个完全开源的 AI 平台,支持从 1000 万到 4050 亿参数的模型训练,涵盖文本和多模态模型,提供零样板代码开发体验。
182 43
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
|
10天前
|
机器学习/深度学习 人工智能 计算机视觉
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
MILS 是 Meta AI 推出的零样本生成高质量多模态描述方法,支持图像、视频和音频的描述生成,无需额外训练。
99 34
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
|
1月前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
80 10
|
2月前
|
机器学习/深度学习 存储 人工智能
【AI系统】感知量化训练 QAT
本文介绍感知量化训练(QAT)流程,旨在减少神经网络从FP32量化至INT8时的精度损失。通过在模型中插入伪量化节点(FakeQuant)模拟量化误差,并在训练中最小化这些误差,使模型适应量化环境。文章还探讨了伪量化节点的作用、正向与反向传播处理、TensorRT中的QAT模型高效推理,以及QAT与PTQ的对比,提供了实践技巧,如从良好校准的PTQ模型开始、采用余弦退火学习率计划等。
114 2
【AI系统】感知量化训练 QAT
|
2月前
|
机器学习/深度学习 存储 人工智能
【AI系统】训练后量化与部署
本文详细介绍了训练后量化技术,涵盖动态和静态量化方法,旨在将模型权重和激活从浮点数转换为整数,以优化模型大小和推理速度。通过KL散度等校准方法和量化粒度控制,文章探讨了如何平衡模型精度与性能,同时提供了端侧量化推理部署的具体实现步骤和技术技巧。
98 1
【AI系统】训练后量化与部署
|
2月前
|
人工智能 智能硬件
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
SPAR 是智谱团队推出的自我博弈训练框架,旨在提升大型语言模型在指令遵循方面的能力,通过生成者和完善者的互动以及树搜索技术优化模型响应。
73 0
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
|
2月前
|
人工智能 PyTorch 测试技术
【AI系统】并行训练基本介绍
分布式训练通过将任务分配至多个节点,显著提升模型训练效率与精度。本文聚焦PyTorch2.0中的分布式训练技术,涵盖数据并行、模型并行及混合并行等策略,以及DDP、RPC等核心组件的应用,旨在帮助开发者针对不同场景选择最合适的训练方式,实现高效的大模型训练。
86 8
|
4月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
453 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
3月前
|
机器学习/深度学习 存储 人工智能
【AI系统】谷歌 TPU v2 训练芯片
2017年,谷歌推出TPU v2,专为神经网络训练设计,标志着从推理转向训练的重大转变。TPU v2引入多项创新,包括Vector Memory、Vector Unit、MXU及HBM内存,以应对训练中数据并行、计算复杂度高等挑战。其高效互联技术构建了TPU v2超级计算机,显著提升大规模模型训练的效率和性能。
84 0

热门文章

最新文章