TensorFlow教程之API DOC 6.3.13. STATE OPS

简介:

本文档为TensorFlow参考文档,本转载已得到TensorFlow中文社区授权。


Variables

Note: Functions taking Tensor arguments can also take anything accepted by tf.convert_to_tensor.

Contents

Variables

Variables


class tf.Variable

See the Variables How To for a high level overview.

A variable maintains state in the graph across calls to run(). You add a variable to the graph by constructing an instance of the class Variable.

The Variable() constructor requires an initial value for the variable, which can be a Tensor of any type and shape. The initial value defines the type and shape of the variable. After construction, the type and shape of the variable are fixed. The value can be changed using one of the assign methods.

If you want to change the shape of a variable later you have to use an assign Op with validate_shape=False.

Just like any Tensor, variables created with Variable() can be used as inputs for other Ops in the graph. Additionally, all the operators overloaded for the Tensor class are carried over to variables, so you can also add nodes to the graph by just doing arithmetic on variables.

import tensorflow as tf

# Create a variable.
w = tf.Variable(<initial-value>, name=<optional-name>)

# Use the variable in the graph like any Tensor.
y = tf.matmul(w, ...another variable or tensor...)

# The overloaded operators are available too.
z = tf.sigmoid(w + b)

# Assign a new value to the variable with `assign()` or a related method.
w.assign(w + 1.0)
w.assign_add(1.0)

When you launch the graph, variables have to be explicitly initialized before you can run Ops that use their value. You can initialize a variable by running its initializer op, restoring the variable from a save file, or simply running an assign Op that assigns a value to the variable. In fact, the variable initializer op is just an assign Op that assigns the variable's initial value to the variable itself.

# Launch the graph in a session.
with tf.Session() as sess:
    # Run the variable initializer.
    sess.run(w.initializer)
    # ...you now can run ops that use the value of 'w'...

The most common initialization pattern is to use the convenience function initialize_all_variables()to add an Op to the graph that initializes all the variables. You then run that Op after launching the graph.

# Add an Op to initialize all variables.
init_op = tf.initialize_all_variables()

# Launch the graph in a session.
with tf.Session() as sess:
    # Run the Op that initializes all variables.
    sess.run(init_op)
    # ...you can now run any Op that uses variable values...

If you need to create a variable with an initial value dependent on another variable, use the other variable's initialized_value(). This ensures that variables are initialized in the right order.

All variables are automatically collected in the graph where they are created. By default, the constructor adds the new variable to the graph collection GraphKeys.VARIABLES. The convenience functionall_variables() returns the contents of that collection.

When building a machine learning model it is often convenient to distinguish betwen variables holding the trainable model parameters and other variables such as a global step variable used to count training steps. To make this easier, the variable constructor supports a trainable=<bool> parameter. If True, the new variable is also added to the graph collection GraphKeys.TRAINABLE_VARIABLES. The convenience function trainable_variables() returns the contents of this collection. The various Optimizer classes use this collection as the default list of variables to optimize.

Creating a variable.


tf.Variable.__init__(initial_value, trainable=True, collections=None, validate_shape=True, name=None)

Creates a new variable with value initial_value.

The new variable is added to the graph collections listed in collections, which defaults to [GraphKeys.VARIABLES].

If trainable is True the variable is also added to the graph collection GraphKeys.TRAINABLE_VARIABLES.

This constructor creates both a variable Op and an assign Op to set the variable to its initial value.

Args:
  • initial_value: A Tensor, or Python object convertible to a Tensor. The initial value for the Variable. Must have a shape specified unless validate_shape is set to False.
  • trainable: If True, the default, also adds the variable to the graph collection GraphKeys.TRAINABLE_VARIABLES. This collection is used as the default list of variables to use by the Optimizer classes.
  • collections: List of graph collections keys. The new variable is added to these collections. Defaults to [GraphKeys.VARIABLES].
  • validate_shape: If False, allows the variable to be initialized with a value of unknown shape. If True, the default, the shape of initial_value must be known.
  • name: Optional name for the variable. Defaults to 'Variable' and gets uniquified automatically.
Returns:

A Variable.

Raises:
  • ValueError: If the initial value does not have a shape and validate_shape is True.

tf.Variable.initialized_value()

Returns the value of the initialized variable.

You should use this instead of the variable itself to initialize another variable with a value that depends on the value of this variable.

# Initialize 'v' with a random tensor.
v = tf.Variable(tf.truncated_normal([10, 40]))
# Use `initialized_value` to guarantee that `v` has been
# initialized before its value is used to initialize `w`.
# The random values are picked only once.
w = tf.Variable(v.initialized_value() * 2.0)
Returns:

Tensor holding the value of this variable after its initializer has run.

Changing a variable value.


tf.Variable.assign(value, use_locking=False)

Assigns a new value to the variable.

This is essentially a shortcut for assign(self, value).

Args:
  • value: A Tensor. The new value for this variable.
  • use_locking: If True, use locking during the assignment.
Returns:

Tensor that will hold the new value of this variable after the assignment has completed.


tf.Variable.assign_add(delta, use_locking=False)

Adds a value to this variable.

This is essentially a shortcut for assign_add(self, delta).

Args:
  • delta: A Tensor. The value to add to this variable.
  • use_locking: If True, use locking during the operation.
Returns:

Tensor that will hold the new value of this variable after the addition has completed.


tf.Variable.assign_sub(delta, use_locking=False)

Subtracts a value from this variable.

This is essentially a shortcut for assign_sub(self, delta).

Args:
  • delta: A Tensor. The value to subtract from this variable.
  • use_locking: If True, use locking during the operation.
Returns:

Tensor that will hold the new value of this variable after the subtraction has completed.


tf.Variable.scatter_sub(sparse_delta, use_locking=False)

Subtracts IndexedSlices from this variable.

This is essentially a shortcut for scatter_sub(self, sparse_delta.indices, sparse_delta.values).

Args:
  • sparse_deltaIndexedSlices to be subtracted from this variable.
  • use_locking: If True, use locking during the operation.
Returns:

Tensor that will hold the new value of this variable after the scattered subtraction has completed.

Raises:
  • ValueError: if sparse_delta is not an IndexedSlices.

tf.Variable.count_up_to(limit)

Increments this variable until it reaches limit.

When that Op is run it tries to increment the variable by 1. If incrementing the variable would bring it above limit then the Op raises the exception OutOfRangeError.

If no error is raised, the Op outputs the value of the variable before the increment.

This is essentially a shortcut for count_up_to(self, limit).

Args:
  • limit: value at which incrementing the variable raises an error.
Returns:

Tensor that will hold the variable value before the increment. If no other Op modifies this variable, the values produced will all be distinct.


tf.Variable.eval(session=None)

In a session, computes and returns the value of this variable.

This is not a graph construction method, it does not add ops to the graph.

This convenience method requires a session where the graph containing this variable has been launched. If no session is passed, the default session is used. See the Session class for more information on launching a graph and on sessions.

v = tf.Variable([1, 2])
init = tf.initialize_all_variables()

with tf.Session() as sess:
    sess.run(init)
    # Usage passing the session explicitly.
    print v.eval(sess)
    # Usage with the default session.  The 'with' block
    # above makes 'sess' the default session.
    print v.eval()
Args:
  • session: The session to use to evaluate this variable. If none, the default session is used.
Returns:

A numpy ndarray with a copy of the value of this variable.

Properties.


tf.Variable.name

The name of this variable.


tf.Variable.dtype

The DType of this variable.


tf.Variable.get_shape()

The TensorShape of this variable.

Returns:

TensorShape.


tf.Variable.device

The device of this variable.


tf.Variable.initializer

The initializer operation for this variable.


tf.Variable.graph

The Graph of this variable.


tf.Variable.op

The Operation of this variable.

Variable helper functions

TensorFlow provides a set of functions to help manage the set of variables collected in the graph.


tf.all_variables()

Returns all variables collected in the graph.

The Variable() constructor automatically adds new variables to the graph collection GraphKeys.VARIABLES. This convenience function returns the contents of that collection.

Returns:

A list of Variable objects.


tf.trainable_variables()

Returns all variables created with trainable=True.

When passed trainable=True, the Variable() constructor automatically adds new variables to the graph collection GraphKeys.TRAINABLE_VARIABLES. This convenience function returns the contents of that collection.

Returns:

A list of Variable objects.


tf.initialize_all_variables()

Returns an Op that initializes all variables.

This is just a shortcut for initialize_variables(all_variables())

Returns:

An Op that initializes all variables in the graph.


tf.initialize_variables(var_list, name='init')

Returns an Op that initializes a list of variables.

After you launch the graph in a session, you can run the returned Op to initialize all the variables in var_list. This Op runs all the initializers of the variables in var_list in parallel.

Calling initialize_variables() is equivalent to passing the list of initializers to Group().

If var_list is empty, however, the function still returns an Op that can be run. That Op just has no effect.

Args:
  • var_list: List of Variable objects to initialize.
  • name: Optional name for the returned operation.
Returns:

An Op that run the initializers of all the specified variables.


tf.assert_variables_initialized(var_list=None)

Returns an Op to check if variables are initialized.

When run, the returned Op will raise the exception FailedPreconditionError if any of the variables has not yet been initialized.

Note: This function is implemented by trying to fetch the values of the variables. If one of the variables is not initialized a message may be logged by the C++ runtime. This is expected.

Args:
  • var_list: List of Variable objects to check. Defaults to the value of all_variables().
Returns:

An Op, or None if there are no variables.

Saving and Restoring Variables


class tf.train.Saver

Saves and restores variables.

See Variables for an overview of variables, saving and restoring.

The Saver class adds ops to save and restore variables to and from checkpoints. It also provides convenience methods to run these ops.

Checkpoints are binary files in a proprietary format which map variable names to tensor values. The best way to examine the contents of a checkpoint is to load it using a Saver.

Savers can automatically number checkpoint filenames with a provided counter. This lets you keep multiple checkpoints at different steps while training a model. For example you can number the checkpoint filenames with the training step number. To avoid filling up disks, savers manage checkpoint files automatically. For example, they can keep only the N most recent files, or one checkpoint for every N hours of training.

You number checkpoint filenames by passing a value to the optional global_step argument to save():

saver.save(sess, 'my-model', global_step=0) ==> filename: 'my-model-0'
...
saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'

Additionally, optional arguments to the Saver() constructor let you control the proliferation of checkpoint files on disk:

  • max_to_keep indicates the maximum number of recent checkpoint files to keep. As new files are created, older files are deleted. If None or 0, all checkpoint files are kept. Defaults to 5 (that is, the 5 most recent checkpoint files are kept.)

  • keep_checkpoint_every_n_hours: In addition to keeping the most recent max_to_keep checkpoint files, you might want to keep one checkpoint file for every N hours of training. This can be useful if you want to later analyze how a model progressed during a long training session. For example, passing keep_checkpoint_every_n_hours=2 ensures that you keep one checkpoint file for every 2 hours of training. The default value of 10,000 hours effectively disables the feature.

Note that you still have to call the save() method to save the model. Passing these arguments to the constructor will not save variables automatically for you.

A training program that saves regularly looks like:

...
# Create a saver.
saver = tf.train.Saver(...variables...)
# Launch the graph and train, saving the model every 1,000 steps.
sess = tf.Session()
for step in xrange(1000000):
    sess.run(..training_op..)
    if step % 1000 == 0:
        # Append the step number to the checkpoint name:
        saver.save(sess, 'my-model', global_step=step)

In addition to checkpoint files, savers keep a protocol buffer on disk with the list of recent checkpoints. This is used to manage numbered checkpoint files and by latest_checkpoint(), which makes it easy to discover the path to the most recent checkpoint. That protocol buffer is stored in a file named 'checkpoint' next to the checkpoint files.

If you create several savers, you can specify a different filename for the protocol buffer file in the call to save().


tf.train.Saver.__init__(var_list=None, reshape=False, sharded=False, max_to_keep=5, keep_checkpoint_every_n_hours=10000.0, name=None, restore_sequentially=False, saver_def=None, builder=None)

Creates a Saver.

The constructor adds ops to save and restore variables.

var_list specifies the variables that will be saved and restored. It can be passed as a dict or a list:

  • dict of names to variables: The keys are the names that will be used to save or restore the variables in the checkpoint files.
  • A list of variables: The variables will be keyed with their op name in the checkpoint files.

For example:

v1 = tf.Variable(..., name='v1')
v2 = tf.Variable(..., name='v2')

# Pass the variables as a dict:
saver = tf.train.Saver({'v1': v1, 'v2': v2})

# Or pass them as a list.
saver = tf.train.Saver([v1, v2])
# Passing a list is equivalent to passing a dict with the variable op names
# as keys:
saver = tf.train.Saver({v.op.name: v for v in [v1, v2]})

The optional reshape argument, if True, allows restoring a variable from a save file where the variable had a different shape, but the same number of elements and type. This is useful if you have reshaped a variable and want to reload it from an older checkpoint.

The optional sharded argument, if True, instructs the saver to shard checkpoints per device.

Args:
  • var_list: A list of Variables or a dictionary mapping names to Variables. If None, defaults to the list of all variables.
  • reshape: If True, allows restoring parameters from a checkpoint where the variables have a different shape.
  • sharded: If True, shard the checkpoints, one per device.
  • max_to_keep: maximum number of recent checkpoints to keep. Defaults to 10,000 hours.
  • keep_checkpoint_every_n_hours: How often to keep checkpoints. Defaults to 10,000 hours.
  • name: string. Optional name to use as a prefix when adding operations.
  • restore_sequentially: A Bool, which if true, causes restore of different variables to happen sequentially within each device. This can lower memory usage when restoring very large models.
  • saver_def: Optional SaverDef proto to use instead of running the builder. This is only useful for specialty code that wants to recreate a Saver object for a previously built Graph that had a Saver. The saver_def proto should be the one returned by the as_saver_def() call of the Saver that was created for that Graph.
  • builder: Optional SaverBuilder to use if a saver_def was not provided. Defaults to BaseSaverBuilder().
Raises:
  • TypeError: If var_list is invalid.
  • ValueError: If any of the keys or values in var_list is not unique.

tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None)

Saves variables.

This method runs the ops added by the constructor for saving variables. It requires a session in which the graph was launched. The variables to save must also have been initialized.

The method returns the path of the newly created checkpoint file. This path can be passed directly to a call to restore().

Args:
  • sess: A Session to use to save the variables.
  • save_path: string. Path to the checkpoint filename. If the saver is sharded, this is the prefix of the sharded checkpoint filename.
  • global_step: If provided the global step number is appended to save_path to create the checkpoint filename. The optional argument can be a Tensor, a Tensor name or an integer.
  • latest_filename: Optional name for the protocol buffer file that will contains the list of most recent checkpoint filenames. That file, kept in the same directory as the checkpoint files, is automatically managed by the saver to keep track of recent checkpoints. Defaults to 'checkpoint'.
Returns:

A string: path at which the variables were saved. If the saver is sharded, this string ends with: '-?????-of-nnnnn' where 'nnnnn' is the number of shards created.

Raises:
  • TypeError: If sess is not a Session.

tf.train.Saver.restore(sess, save_path)

Restores previously saved variables.

This method runs the ops added by the constructor for restoring variables. It requires a session in which the graph was launched. The variables to restore do not have to have been initialized, as restoring is itself a way to initialize variables.

The save_path argument is typically a value previously returned from a save() call, or a call to latest_checkpoint().

Args:
  • sess: A Session to use to restore the parameters.
  • save_path: Path where parameters were previously saved.

Other utility methods.


tf.train.Saver.last_checkpoints

List of not-yet-deleted checkpoint filenames.

You can pass any of the returned values to restore().

Returns:

A list of checkpoint filenames, sorted from oldest to newest.


tf.train.Saver.set_last_checkpoints(last_checkpoints)

Sets the list of not-yet-deleted checkpoint filenames.

Args:
  • last_checkpoints: a list of checkpoint filenames.
Raises:
  • AssertionError: if the list of checkpoint filenames has already been set.

tf.train.Saver.as_saver_def()

Generates a SaverDef representation of this saver.

Returns:

SaverDef proto.


tf.train.latest_checkpoint(checkpoint_dir, latest_filename=None)

Finds the filename of latest saved checkpoint file.

Args:
  • checkpoint_dir: Directory where the variables were saved.
  • latest_filename: Optional name for the protocol buffer file that contains the list of most recent checkpoint filenames. See the corresponding argument to Saver.save().
Returns:

The full path to the latest checkpoint or None if no checkpoint was found.


tf.train.get_checkpoint_state(checkpoint_dir, latest_filename=None)

Returns CheckpointState proto from the "checkpoint" file.

If the "checkpoint" file contains a valid CheckpointState proto, returns it.

Args:
  • checkpoint_dir: The directory of checkpoints.
  • latest_filename: Optional name of the checkpoint file. Default to 'checkpoint'.
Returns:

A CheckpointState if the state was available, None otherwise.


tf.train.update_checkpoint_state(save_dir, model_checkpoint_path, all_model_checkpoint_paths=None, latest_filename=None)

Updates the content of the 'checkpoint' file.

This updates the checkpoint file containing a CheckpointState proto.

Args:
  • save_dir: Directory where the model was saved.
  • model_checkpoint_path: The checkpoint file.
  • all_model_checkpoint_paths: list of strings. Paths to all not-yet-deleted checkpoints, sorted from oldest to newest. If this is a non-empty list, the last element must be equal to model_checkpoint_path. These paths are also saved in the CheckpointState proto.
  • latest_filename: Optional name of the checkpoint file. Default to 'checkpoint'.
Raises:
  • RuntimeError: If the save paths conflict.

Sharing Variables

TensorFlow provides several classes and operations that you can use to create variables contingent on certain conditions.


tf.get_variable(name, shape=None, dtype=tf.float32, initializer=None, trainable=True, collections=None)

Gets an existing variable with these parameters or create a new one.

This function prefixes the name with the current variable scope and performs reuse checks. See theVariable Scope How To for an extensive description of how reusing works. Here is a basic example:

with tf.variable_scope("foo"):
    v = get_variable("v", [1])  # v.name == "foo/v:0"
    w = get_variable("w", [1])  # w.name == "foo/w:0"
with tf.variable_scope("foo", reuse=True)
    v1 = get_variable("v")  # The same as v above.

If initializer is None (the default), the default initializer passed in the constructor is used. If that one is None too, a UniformUnitScalingInitializer will be used.

Args:
  • name: the name of the new or existing variable.
  • shape: shape of the new or existing variable.
  • dtype: type of the new or existing variable (defaults to DT_FLOAT).
  • initializer: initializer for the variable if one is created.
  • trainable: If True also add the variable to the graph collection GraphKeys.TRAINABLE_VARIABLES(see variables.Variable).
  • collections: List of graph collections keys to add the Variable to. Defaults to [GraphKeys.VARIABLES] (see variables.Variable).
Returns:

The created or existing variable.

Raises:
  • ValueError: when creating a new variable and shape is not declared, or when violating reuse during variable creation. Reuse is set inside variable_scope.

tf.get_variable_scope()

Returns the current variable scope.


tf.variable_scope(name_or_scope, reuse=None, initializer=None)

Returns a context for variable scope.

Variable scope allows to create new variables and to share already created ones while providing checks to not create or share by accident. For details, see the Variable Scope How To, here we present only a few basic examples.

Simple example of how to create a new variable:

with tf.variable_scope("foo"):
    with tf.variable_scope("bar"):
        v = tf.get_variable("v", [1])
        assert v.name == "foo/bar/v:0"

Basic example of sharing a variable:

with tf.variable_scope("foo"):
    v = get_variable("v", [1])
with tf.variable_scope("foo", reuse=True):
    v1 = tf.get_variable("v", [1])
assert v1 == v

Sharing a variable by capturing a scope and setting reuse:

with tf.variable_scope("foo") as scope.
    v = get_variable("v", [1])
    scope.reuse_variables()
    v1 = tf.get_variable("v", [1])
assert v1 == v

To prevent accidental sharing of variables, we raise an exception when getting an existing variable in a non-reusing scope.

with tf.variable_scope("foo") as scope.
    v = get_variable("v", [1])
    v1 = tf.get_variable("v", [1])
    #  Raises ValueError("... v already exists ...").

Similarly, we raise an exception when trying to get a variable that does not exist in reuse mode.

with tf.variable_scope("foo", reuse=True):
    v = get_variable("v", [1])
    #  Raises ValueError("... v does not exists ...").

Note that the reuse flag is inherited: if we open a reusing scope, then all its sub-scopes become reusing as well.

Args:
  • name_or_scopestring or VariableScope: the scope to open.
  • reuseTrue or None; if True, we go into reuse mode for this scope as well as all sub-scopes; if None, we just inherit the parent scope reuse.
  • initializer: default initializer for variables within this scope.
Yields:

A scope that can be to captured and reused.

Raises:
  • ValueError: when trying to reuse within a create scope, or create within a reuse scope, or if reuse is not None or True.
  • TypeError: when the types of some arguments are not appropriate.

tf.constant_initializer(value=0.0)

Returns an initializer that generates Tensors with a single value.

Args:
  • value: A Python scalar. All elements of the initialized variable will be set to this value.
Returns:

An initializer that generates Tensors with a single value.


tf.random_normal_initializer(mean=0.0, stddev=1.0, seed=None)

Returns an initializer that generates Tensors with a normal distribution.

Args:
  • mean: a python scalar or a scalar tensor. Mean of the random values to generate.
  • stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate.
  • seed: A Python integer. Used to create random seeds. See set_random_seed for behavior.
Returns:

An initializer that generates Tensors with a normal distribution.


tf.truncated_normal_initializer(mean=0.0, stddev=1.0, seed=None)

Returns an initializer that generates a truncated normal distribution.

These values are similar to values from a random_normal_initializer except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters.

Args:
  • mean: a python scalar or a scalar tensor. Mean of the random values to generate.
  • stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate.
  • seed: A Python integer. Used to create random seeds. See set_random_seed for behavior.
Returns:

An initializer that generates Tensors with a truncated normal distribution.


tf.random_uniform_initializer(minval=0.0, maxval=1.0, seed=None)

Returns an initializer that generates Tensors with a uniform distribution.

Args:
  • minval: a python scalar or a scalar tensor. lower bound of the range of random values to generate.
  • maxval: a python scalar or a scalar tensor. upper bound of the range of random values to generate.
  • seed: A Python integer. Used to create random seeds. See set_random_seed for behavior.
Returns:

An initializer that generates Tensors with a uniform distribution.


tf.uniform_unit_scaling_initializer(factor=1.0, seed=None)

Returns an initializer that generates tensors without scaling variance.

When initializing a deep network, it is in principle advantageous to keep the scale of the input variance constant, so it does not explode or diminish by reaching the final layer. If the input is x and the operation x * W, and we want to initialize W uniformly at random, we need to pick W from

[-sqrt(3) / sqrt(dim), sqrt(3) / sqrt(dim)]

to keep the scale intact, where dim = W.shape[0] (the size of the input). A similar calculation for convolutional networks gives an analogous result with dim equal to the product of the first 3 dimensions. When nonlinearities are present, we need to multiply this by a constant factor. See https://arxiv.org/pdf/1412.6558v3.pdf for deeper motivation, experiments and the calculation of constants. In section 2.3 there, the constants were numerically computed: for a linear layer it's 1.0, relu: ~1.43, tanh: ~1.15.

Args:
  • factor: Float. A multiplicative factor by which the values will be scaled.
  • seed: A Python integer. Used to create random seeds. See set_random_seed for behavior.
Returns:

An initializer that generates tensors with unit variance.


tf.zeros_initializer(shape, dtype=tf.float32)

An adaptor for zeros() to match the Initializer spec.

Sparse Variable Updates

The sparse update ops modify a subset of the entries in a dense Variable, either overwriting the entries or adding / subtracting a delta. These are useful for training embedding models and similar lookup-based networks, since only a small subset of embedding vectors change in any given step.

Since a sparse update of a large tensor may be generated automatically during gradient computation (as in the gradient of tf.gather), an IndexedSlices class is provided that encapsulates a set of sparse indices and values. IndexedSlices objects are detected and handled automatically by the optimizers in most cases.


tf.scatter_update(ref, indices, updates, use_locking=None, name=None)

Applies sparse updates to a variable reference.

This operation computes

# Scalar indices
ref[indices, ...] = updates[...]

# Vector indices (for each i)
ref[indices[i], ...] = updates[i, ...]

# High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] = updates[i, ..., j, ...]

This operation outputs ref after the update is done. This makes it easier to chain operations that need to use the reset value.

If indices contains duplicate entries, lexicographically later entries override earlier entries.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:
  • ref: A mutable Tensor. Should be from a Variable node.
  • indices: A Tensor. Must be one of the following types: int32int64. A tensor of indices into the first dimension of ref.
  • updates: A Tensor. Must have the same type as ref. A tensor of updated values to store in ref.
  • use_locking: An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • name: A name for the operation (optional).
Returns:

Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done.


tf.scatter_add(ref, indices, updates, use_locking=None, name=None)

Adds sparse updates to a variable reference.

This operation computes

# Scalar indices
ref[indices, ...] += updates[...]

# Vector indices (for each i)
ref[indices[i], ...] += updates[i, ...]

# High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] += updates[i, ..., j, ...]

This operation outputs ref after the update is done. This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference the same location, their contributions add.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:
  • ref: A mutable Tensor. Must be one of the following types: float32float64int64int32uint8int16int8complex64qint8quint8qint32. Should be from a Variable node.
  • indices: A Tensor. Must be one of the following types: int32int64. A tensor of indices into the first dimension of ref.
  • updates: A Tensor. Must have the same type as ref. A tensor of updated values to add to ref.
  • use_locking: An optional bool. Defaults to False. If True, the addition will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • name: A name for the operation (optional).
Returns:

Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done.


tf.scatter_sub(ref, indices, updates, use_locking=None, name=None)

Subtracts sparse updates to a variable reference.

# Scalar indices
ref[indices, ...] -= updates[...]

# Vector indices (for each i)
ref[indices[i], ...] -= updates[i, ...]

# High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] -= updates[i, ..., j, ...]

This operation outputs ref after the update is done. This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference the same location, their (negated) contributions add.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:
  • ref: A mutable Tensor. Must be one of the following types: float32float64int64int32uint8int16int8complex64qint8quint8qint32. Should be from a Variable node.
  • indices: A Tensor. Must be one of the following types: int32int64. A tensor of indices into the first dimension of ref.
  • updates: A Tensor. Must have the same type as ref. A tensor of updated values to subtract from ref.
  • use_locking: An optional bool. Defaults to False. If True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • name: A name for the operation (optional).
Returns:

Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done.


tf.sparse_mask(a, mask_indices, name=None)

Masks elements of IndexedSlices.

Given an IndexedSlices instance a, returns another IndexedSlices that contains a subset of the slices of a. Only the slices at indices specified in mask_indices are returned.

This is useful when you need to extract a subset of slices in an IndexedSlices object.

For example:

# `a` contains slices at indices [12, 26, 37, 45] from a large tensor
# with shape [1000, 10]
a.indices => [12, 26, 37, 45]
tf.shape(a.values) => [4, 10]

# `b` will be the subset of `a` slices at its second and third indices, so
# we want to mask of its first and last indices (which are at absolute
# indices 12, 45)
b = tf.sparse_mask(a, [12, 45])

b.indices => [26, 37]
tf.shape(b.values) => [2, 10]
Args:
  • a: An IndexedSlices instance.
  • mask_indices: Indices of elements to mask.
  • name: A name for the operation (optional).
Returns:

The masked IndexedSlices instance.


class tf.IndexedSlices

A sparse representation of a set of tensor slices at given indices.

This class is a simple wrapper for a pair of Tensor objects:

  • values: A Tensor of any dtype with shape [D0, D1, ..., Dn].
  • indices: A 1-D integer Tensor with shape [D0].

An IndexedSlices is typically used to represent a subset of a larger tensor dense of shape [LARGE0, D1, .. , DN] where LARGE0 >> D0. The values in indices are the indices in the first dimension of the slices that have been extracted from the larger tensor.

The dense tensor dense represented by an IndexedSlices slices has

dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]

The IndexedSlices class is used principally in the definition of gradients for operations that have sparse gradients (e.g. tf.gather).

Contrast this representation with SparseTensor, which uses multi-dimensional indices and scalar values.


tf.IndexedSlices.__init__(values, indices, dense_shape=None)

Creates an IndexedSlices.


tf.IndexedSlices.values

Tensor containing the values of the slices.


tf.IndexedSlices.indices

A 1-D Tensor containing the indices of the slices.


tf.IndexedSlices.dense_shape

A 1-D Tensor containing the shape of the corresponding dense tensor.


tf.IndexedSlices.name

The name of this IndexedSlices.


tf.IndexedSlices.dtype

The DType of elements in this tensor.


tf.IndexedSlices.device

The name of the device on which values will be produced, or None.


tf.IndexedSlices.op

The Operation that produces values as an output.

相关文章
|
1月前
|
网络协议 API
检测指定TCP端口开放状态免费API接口教程
此API用于检测指定TCP端口是否开放,支持POST/GET请求。需提供用户ID、KEY、目标主机,可选指定端口(默认80)和地区(默认国内)。返回状态码、信息提示、检测主机、端口及状态(开放或关闭)。示例中ID和KEY为公共测试用,建议使用个人ID和KEY以享受更高调用频率。
55 14
|
1月前
|
API
获取网页状态码[可指定地域]免费API接口教程
该接口用于获取指定网址的访问状态码,支持从国内、香港、美国等地域节点访问。通过POST或GET请求,需提供用户ID、KEY及目标网址等参数。返回结果包括状态码和信息提示。 示例:https://cn.apihz.cn/api/wangzhan/getcode.php?id=88888888&key=88888888&type=1&url=www.apihz.cn。
|
1月前
|
缓存 算法 API
查询域名WHOIS信息免费API接口教程
该API用于查询顶级域名的WHOIS信息,不支持国别域名和中文域名。通过POST或GET请求,需提供用户ID、KEY及待查询域名。返回信息包括域名状态、注册商、时间等详细数据。示例与文档见官网。
|
1月前
|
前端开发 JavaScript API
提取网页所有链接免费API接口教程
此API用于提取指定网页内的所有链接信息并进行分类,支持POST和GET请求方式。需提供用户ID、KEY及目标网址等参数,可选指定访问节点。返回结果包括状态码、信息提示及各类链接集合,如图片、视频、文档等。示例中展示了请求格式与返回数据结构。
|
1天前
|
JSON API 数据格式
京东商品SKU价格接口(Jd.item_get)丨京东API接口指南
京东商品SKU价格接口(Jd.item_get)是京东开放平台提供的API,用于获取商品详细信息及价格。开发者需先注册账号、申请权限并获取密钥,随后通过HTTP请求调用API,传入商品ID等参数,返回JSON格式的商品信息,包括价格、原价等。接口支持GET/POST方式,适用于Python等语言的开发环境。
27 11
|
25天前
|
人工智能 自然语言处理 API
Multimodal Live API:谷歌推出新的 AI 接口,支持多模态交互和低延迟实时互动
谷歌推出的Multimodal Live API是一个支持多模态交互、低延迟实时互动的AI接口,能够处理文本、音频和视频输入,提供自然流畅的对话体验,适用于多种应用场景。
72 3
Multimodal Live API:谷歌推出新的 AI 接口,支持多模态交互和低延迟实时互动
|
12天前
|
JSON 安全 API
淘宝商品详情API接口(item get pro接口概述)
淘宝商品详情API接口旨在帮助开发者获取淘宝商品的详细信息,包括商品标题、描述、价格、库存、销量、评价等。这些信息对于电商企业而言具有极高的价值,可用于商品信息展示、市场分析、价格比较等多种应用场景。
|
20天前
|
前端开发 API 数据库
Next 编写接口api
Next 编写接口api
|
26天前
|
XML JSON 缓存
阿里巴巴商品详情数据接口(alibaba.item_get) 丨阿里巴巴 API 实时接口指南
阿里巴巴商品详情数据接口(alibaba.item_get)允许商家通过API获取商品的详细信息,包括标题、描述、价格、销量、评价等。主要参数为商品ID(num_iid),支持多种返回数据格式,如json、xml等,便于开发者根据需求选择。使用前需注册并获得App Key与App Secret,注意遵守使用规范。
|
25天前
|
JSON API 开发者
淘宝买家秀数据接口(taobao.item_review_show)丨淘宝 API 实时接口指南
淘宝买家秀数据接口(taobao.item_review_show)可获取买家上传的图片、视频、评论等“买家秀”内容,为潜在买家提供真实参考,帮助商家优化产品和营销策略。使用前需注册开发者账号,构建请求URL并发送GET请求,解析响应数据。调用时需遵守平台规定,保护用户隐私,确保内容真实性。