一文读懂物联网大数据产业链

简介:

大数据开启了一个大规模生产、分享和应用数据的时代,它给技术和商业带来了巨大的变化。麦肯锡研究表明,在医疗、零售和制造业领域,大数据每年可以提高劳动生产率0.5-1个百分点。物联网时代,大数据在核心领域的渗透速度有目共睹。大数据的产业链可分为标准与规范、数据安全、数据采集、数据存储与管理、数据分析与挖掘、数据运维以及数据应用几个环节,覆盖了数据从产生到应用的整个生命周期。 

  数据标准与规范
  大数据标准体系是开展大数据应用的前提条件,没有统一的标准体系,数据共享、分析、挖掘、决策支持将无从谈起。大数据标准包括体系结构标准、数据格式与表示标准、组织管理标准、安全标准和评测标准。在标准化建设方面,参与单位主要包括中国电子技术标准化研究院、各个数据库公司、数据拥有部门以及各个行业的标准化组织。
   数据安全
  随着海量数据的不断增加,对数据存储和访问的安全性要求越来越高,从而对数据的访问控制技术、加密保护技术以及多副本与容灾机制等提出了更高的要求。另外,由于大数据处理主要采用分布式计算方法,这必然面临着数据传输、信息交互等环节,如何在这些环节中保护数据价值不泄露、信息不丢失,保护所有站点的安全是大数据发展面对的重大挑战。在大数据时代,传统的隐私数据内涵与外延有了巨大突破和延伸,数据的多元化与彼此的关联性进一步发展,使得对单一数据的隐私保护方法变得极其脆弱,需要针对多元数据融合的安全提出。在数据安全环节上主要参与单位包括中国电子科技集团公司第30研究所以及奇虎 360、瑞星等杀毒软件公司。
   数据采集
  政府部门、以 BAT 为代表的互联网企业、运营商是当前大数据的主要拥有者。除此之外,利用网络爬虫或网站公开 API 等途径对网络数据进行采集也是大数据的主要来源。现实世界中的数据大多不完整或不一致,无法直接进行数据挖掘或挖掘结果不理想,需要对采集的数据进行填补、平滑、合并、规格化、检查一致性等数据预处理操作,并且往往需要大量的人工参与,因此数据采集和清洗成为大数据产业链的一个重要环节。
   数据存储与管理
  大数据存储与管理的主要参与者以传统数据库企业为主,国际上主要有 IBM、Oracle、Intel、Green-plum、infor Matri Cloudera 等; 国内主要有中兴、华为、用友、浪潮、托尔思、数据堂、九次方、亿赞普、达梦等。各家企业针对大数据应用开展各具特色的数据库架构和数据组织管理研究,形成针对具体领域的产品。
   数据分析与挖掘
  大数据分析与挖掘的意图主要集中在两方面: 一是从大量的机构结构化和半结构化数据中分析出计算机可以理解的语义信息或知识,二是对隐性的知识,如关联情况、意图等进行挖掘。常用的方法包括分类、聚类、关联规则挖掘、序列模式挖掘、时间序列分析预测等。数据分析与挖掘的核心算法与软件主要掌握在大型数据库公司及高校的手里,国际上主要参与者包括 IBM、甲骨文、微软、谷歌、亚马逊、Facebook 等,国内主要参与单位包括数据库企业、高校、以 BAT 为代表的大型互联网企业等。数据分析与挖掘的能力直接决定了大数据的应用推广程度和范围,是大数据产业的核心。
   数据运维
  由于数据的重要性得到普遍认可,除政府部门不具备数据运维服务条件外,数据的采集者通常就是数据运维者。各地政府方面则通常利用大数据平台建设来推动政府大数据的公开与共享,如云上贵州,吸引个人和企业用户开展创新与创业,积极推动大数据的增值服务。
   数据应用
大数据对传统信息技术带来革命性挑战,正在重构信息技术体系和产业格局。国内以阿里巴巴、百度、腾讯、人大金仓、浪潮、曙光、南大通用为代表的互联网企业、云计算和数据库厂商纷纷加大应用推广力度,在国际先进的开源大数据技术基础上,形成独自的大数据平台构建和应用服务解决方案,以支撑不同行业不同领域的专业化应用。虽然这些企业在平台构建上有着得天独厚的优势,但是在某些具体业务领域,并不擅长或者关切。物联网解决方案提供商航大物联(www.leadtorch.com)发现传统企业以及从事大数据的微型企业是具体业务领域上大数据应用的主力军。应用是大数据价值的体现,是大数据发展的原始推动力。当前大数据的应用正倒逼软件技术、数据架构、数据共享方式的转变,在转变思维过程中需要积极转变思维,明确出数据共享的方式是什么,数据拥有者的利益如何平衡,商业模式如何开展等等。

在大数据时代背景下,让人们越发认识到,比掌握庞大的数据信息更重要的是掌握对含有意义的数据进行专业化处理的技术。如果将大数据比作一种产业,那么这产业盈利的关键点在于,提高对数据的“加工能力”,通过“加工”实现数据的“增值”,这便是大数据关键技术发挥的能力。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 人工智能 大数据
物联网、大数据、云计算、人工智能之间的关系
物联网、大数据、云计算、人工智能之间的关系是紧密相连、相互促进的。这四者既有各自独立的技术特征,又能在不同层面上相互融合,共同推动信息技术的发展和应用。
315 0
|
4月前
|
分布式计算 搜索推荐 物联网
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
|
5月前
|
分布式计算 DataWorks 大数据
MaxCompute产品使用合集之如何实现嵌入式设备到物联网平台再到PAI DSW的云边结合
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
7月前
|
NoSQL 物联网 大数据
【补充】助力工业物联网,工业大数据之AirFlow安装
【补充】助力工业物联网,工业大数据之AirFlow安装
93 1
|
7月前
|
Prometheus 数据可视化 Cloud Native
助力工业物联网,工业大数据之服务域:可视化工具Grafana介绍【三十八】
助力工业物联网,工业大数据之服务域:可视化工具Grafana介绍【三十八】
161 1
|
7月前
|
存储 SQL Oracle
助力工业物联网,工业大数据之服务域:项目总结【三十九】
助力工业物联网,工业大数据之服务域:项目总结【三十九】
108 1
|
7月前
|
监控 物联网 大数据
智慧工地管理平台系统源码基于物联网、云计算、大数据等技术
智慧工地平台APP通过对施工过程人机料法环的全面感知、互联互通、智能协同,提高施工现场的生产效率、管理水平和决策能力,实现施工管理的数字化、智能化、精益化。
112 0
|
23天前
|
存储 安全 物联网
政府在推动物联网技术标准和规范的统一方面可以发挥哪些作用?
政府在推动物联网技术标准和规范的统一方面可以发挥哪些作用?
91 50
|
23天前
|
安全 物联网 物联网安全
制定统一的物联网技术标准和规范的难点有哪些?
制定统一的物联网技术标准和规范的难点有哪些?
32 2
|
21天前
|
供应链 物联网 区块链
探索未来技术潮流:区块链、物联网、虚拟现实的融合与创新
【10月更文挑战第41天】随着科技的不断进步,新技术如区块链、物联网、虚拟现实等正在逐步渗透到我们的日常生活中。本文将深入探讨这些技术的发展趋势和应用场景,以及它们如何相互融合,共同推动社会的进步。我们将通过具体的代码示例,展示这些技术在实际应用中的潜力和价值。无论你是科技爱好者,还是对未来充满好奇的探索者,这篇文章都将为你打开一扇通往未来的窗口。
98 56

热门文章

最新文章

相关产品

  • 物联网平台