《深入理解C++11:C++ 11新特性解析与应用》——3.4 显式转换操作符

简介: 本节书摘来自华章计算机《深入理解C++11:C++ 11新特性解析与应用》一书中的第3章,第3.4节,作者 IBM XL编译器中国开发团队,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.4 显式转换操作符

类别:库作者

在C++中,有个非常好也非常坏的特性,就是隐式类型转换。隐式类型转换的“自动性”可以让程序员免于层层构造类型。但也是由于它的自动性,会在一些程序员意想不到的地方出现严重的但不易被发现的错误。我们可以先看看代码清单3-26所示的这个例子。

image
image

在代码清单3-26中,声明了两个类型Rational1和Rational2。两者在代码上的区别不大,只不过Rational1的构造函数Rational1(int,int)没有explicit关键字修饰,这意味着该构造函数可以被隐式调用。因此,在定义变量r1_1的时候,字面量11就会成功地构造出Rational1(11, 1)这样的变量,Rational2却不能从字面量21中构造,这是因为其构造函数由于使用了关键字explicit修饰,禁止被隐式构造,因此会导致编译失败。相同的情况也出现在函数Display2上,由于字面量2不能隐式地构造出Rational2对象,因此表达式Display2(2)的编译同样无法通过。

这里虽然Display1(1)编译成功,不过如果不是结合了上面Rational1的定义,我们很容易在阅读代码的时候产生误解。按照习惯,程序员会误认为Display1是个打印整型数的函数。因此,使用了explicit这个关键字保证对象的显式构造在一些情况下都是必须的。

不过同样的机制并没有出现在自定义的类型转换符上。这就允许了一个逆向的过程,从自定义类型转向一个已知类型。这样虽然出现问题的几率远小于从已知类型构造自定义类型,不过有的时候,我们确实应该阻止会产生歧义的隐式转换。让我们来看看代码清单3-27所示的例子,该例子来源于C++11提案。

image

在代码清单3-27中,我们定义了一个指针模板类型Ptr。为了方便判断指针是否有效,我们为指针编写了自定义类型转换到bool类型的函数,这样一来,我们就可以通过if(p)这样的表达式来轻松地判断指针是否有效。不过这样的转换使得Ptr和Ptr两个指针的加法运算获得了语法上的允许。不过明显地,我们无法看出其语义上的意义。

在C++11中,标准将explicit的使用范围扩展到了自定义的类型转换操作符上,以支持所谓的“显式类型转换”。explicit关键字作用于类型转换操作符上,意味着只有在直接构造目标类型或显式类型转换的时候可以使用该类型。我们可以看看代码清单3-28所示的例子。

image
image

在代码清单3-28中,我们定义了两个类型ConvertTo和Convertable,Convertable定义了一个显式转换到ConvertTo类型的类型转换符。那么对于main中ConvertTo类型的ct变量而言,由于其直接初始化构造于Convertable变量c,所以可以编译通过。而做强制类型转换的ct3同样通过了编译。而ct2由于需要从c中拷贝构造,因而不能通过编译。此外,我们使用函数Func的时候,传入Convertable的变量c的也会导致参数的拷贝构造,因此也不能通过编译。

如果我们把该方法用于代码清单3-27中,可以发现我们预期的事情就发生了,if(p)可以通过编译,因为可以通过p直接构造出bool类型的变量。而p + pd这样的语句就无法通过编译了,这是由于全局的operator + 并不接受bool类型变量为参数,而Convertable也不能直接构造出适用于operator +的int类型的变量造成的(不过读者可以尝试一下使用p && pd这样的表达式,是能够通过编译的)。这样一来,程序的行为将更加良好。

可以看到,所谓显式类型转换并没完全禁止从源类型到目标类型的转换,不过由于此时拷贝构造和非显式类型转换不被允许,那么我们通常就不能通过赋值表达式或者函数参数的方式来产生这样一个目标类型。通常通过赋值表达式和函数参数进行的转换有可能是程序员的一时疏忽,而并非本意。那么使用了显式类型转换,这样的问题就会暴露出来,这也是我们需要显式转换符的一个重要原因。

相关文章
|
6月前
|
机器学习/深度学习 文字识别 监控
安全监控系统:技术架构与应用解析
该系统采用模块化设计,集成了行为识别、视频监控、人脸识别、危险区域检测、异常事件检测、日志追溯及消息推送等功能,并可选配OCR识别模块。基于深度学习与开源技术栈(如TensorFlow、OpenCV),系统具备高精度、低延迟特点,支持实时分析儿童行为、监测危险区域、识别异常事件,并将结果推送给教师或家长。同时兼容主流硬件,支持本地化推理与分布式处理,确保可靠性与扩展性,为幼儿园安全管理提供全面解决方案。
255 3
|
7月前
|
存储 负载均衡 算法
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
181 15
|
7月前
|
人工智能 API 开发者
HarmonyOS Next~鸿蒙应用框架开发实战:Ability Kit与Accessibility Kit深度解析
本书深入解析HarmonyOS应用框架开发,聚焦Ability Kit与Accessibility Kit两大核心组件。Ability Kit通过FA/PA双引擎架构实现跨设备协同,支持分布式能力开发;Accessibility Kit提供无障碍服务构建方案,优化用户体验。内容涵盖设计理念、实践案例、调试优化及未来演进方向,助力开发者打造高效、包容的分布式应用,体现HarmonyOS生态价值。
329 27
|
7月前
|
供应链 项目管理 容器
深入探索 BPMN、CMMN 和 DMN:从定义到应用的全方位解析
在当今快速变化的商业环境中,对象管理组织(OMG)推出了三种强大的建模标准:BPMN(业务流程模型和符号)、CMMN(案例管理模型和符号)和DMN(决策模型和符号)。它们分别适用于结构化流程管理、动态案例处理和规则驱动的决策制定,并能相互协作,覆盖更广泛的业务场景。BPMN通过直观符号绘制固定流程;CMMN灵活管理不确定的案例;DMN以表格形式定义清晰的决策规则。三者结合可优化企业效率与灵活性。 [阅读更多](https://example.com/blog)
深入探索 BPMN、CMMN 和 DMN:从定义到应用的全方位解析
|
7月前
|
存储 弹性计算 安全
阿里云服务器ECS通用型规格族解析:实例规格、性能基准与场景化应用指南
作为ECS产品矩阵中的核心序列,通用型规格族以均衡的计算、内存、网络和存储性能著称,覆盖从基础应用到高性能计算的广泛场景。通用型规格族属于独享型云服务器,实例采用固定CPU调度模式,实例的每个CPU绑定到一个物理CPU超线程,实例间无CPU资源争抢,实例计算性能稳定且有严格的SLA保证,在性能上会更加稳定,高负载情况下也不会出现资源争夺现象。本文将深度解析阿里云ECS通用型规格族的技术架构、实例规格特性、最新价格政策及典型应用场景,为云计算选型提供参考。
|
7月前
|
数据采集 机器学习/深度学习 存储
可穿戴设备如何重塑医疗健康:技术解析与应用实战
可穿戴设备如何重塑医疗健康:技术解析与应用实战
237 4
|
7月前
|
人工智能 自然语言处理 算法
DeepSeek大模型在客服系统中的应用场景解析
在数字化浪潮下,客户服务领域正经历深刻变革,AI技术成为提升服务效能与体验的关键。DeepSeek大模型凭借自然语言处理、语音交互及多模态技术,显著优化客服流程,提升用户满意度。它通过智能问答、多轮对话引导、多模态语音客服和情绪监测等功能,革新服务模式,实现高效应答与精准分析,推动人机协作,为企业和客户创造更大价值。
616 5
|
7月前
|
机器学习/深度学习 JSON 算法
淘宝拍立淘按图搜索API接口系列的应用与数据解析
淘宝拍立淘按图搜索API接口是阿里巴巴旗下淘宝平台提供的一项基于图像识别技术的创新服务。以下是对该接口系列的应用与数据解析的详细分析
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
DeepSeek 实践应用解析:合力亿捷智能客服迈向 “真智能” 时代
DeepSeek作为人工智能领域的创新翘楚,凭借领先的技术实力,在智能客服领域掀起变革。通过全渠道智能辅助、精准对话管理、多语言交互、智能工单处理、个性化推荐、情绪分析及反馈监控等功能,大幅提升客户服务效率和质量,助力企业实现卓越升级,推动智能化服务发展。
259 1
|
7月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~

推荐镜像

更多
  • DNS